https://economic-sciences.com ES (2025) 21(2S), 104-114| ISSN:1505-4683

ISSN: 1505-4683

From Simulation to Strategy: Integrating Generative AI and Digital Twins in the Downstream Oil & Gas Sector

Dr Santanu Purohit¹, Dr Sujoita Purohit², Dr Arvind Kumar Jain³

¹University of Petroleum and Energy Studies, Dehradun, India ²Mohanlal Sukhadia University, Udaipur, Rajasthan ³University of Petroleum and Energy Studies, India

Abstract

There is growing pressure on the downstream oil and gas and City Gas Distribution (CGD) sectors to increase efficiency, safety, and sustainability—issues that traditional tools struggle to address. By enabling simulated operations, anticipating failures, and promoting prudent decision-making across the asset lifecycle, generative artificial intelligence (GenAI) offers powerful solutions when paired with digital twin technology.

This knowledge is based on qualitative research that examined over 60 academic and commercial sources. Using GANs, LLMs, and transformers, it demonstrates early GenAI and Digital Twin applications in refining, logistics, CGD, and customer service operations. While GenAI can model refining process deviations to optimise crude blends and energy systems, digital twins help monitor catalyst life and unit performance, reducing unplanned shutdowns. Logistics can cut emissions and fuel waste by using AI-driven demand forecasting and route optimisation.

Through the use of AI in CGD, real-time pipeline stress monitoring, leak prediction, and emergency simulation are made possible, increasing network safety and efficiency. GenAI also aids in the creation of synthetic data for model validation, addressing privacy and data availability concerns.

AI-powered chatbots and behavioural modelling enhance customer service and payment efficiency. Predictive analytics support smart meter maintenance and load balancing. GenAI helps simulate pricing strategies and demand across regulatory contexts, which informs strategic marketing and supply decisions.

Together, these applications show how GenAI and Digital Twins are advancing downstream and CGD operations toward a more resilient, intelligent, and secure future.

. Keywords: Green Supply Chain Management, green energy, artificial intelligence, smart sustainability, business intelligence

1. Background and Introduction

The downstream Oil and gas industry and City Gas Distribution (CGD) networks are witnessing an era of great change, with the focus on increasing operational and energy efficiency, attention to safety, and reduced environmental impact. On the whole, it is expected to see more and more that traditional management tools and manual interpretations/rules of thumb will become less and less sufficient to address the complexities, scale, and real-time nature of today's operations (World Economic Forum, 2020). Pressure from regulators, changing customer demands and the call for sustainability have further increased the necessity for innovative technology interventions.

Generative Artificial Intelligence (GenAI) and Digital Twin systems are two of the technology solutions that are driving this digital transformation. AI generation technologies (deep learning circuits), eg, Generative Adversarial Networks (GANS), (LLMS) and transformers, can generate new datasets, simulate operating conditions, and support predictions with predictive modelling. Meanwhile, Digital Twin (a virtual model of a process or physical product) makes it possible to monitor, simulate and optimise in real time at all stages of the asset's life (Gartner, 2022).

These are game changers for downstream refining, logistics and CGD operations. GenAI can model alternative refining scenarios to optimise crude

https://economic-sciences.com

ES (2025) 21(2S), 104-114 ISSN:1505-4683

ISSN: 1505-4683

selections, heat exchanger networking (HEN) and energy integration - achieving cost savings and improved efficiency (Huzaifa, 2023). Real-time monitoring of the catalyst's life cycle and the unit's performance is enabled through Digital Twins, minimising the possibility of forced shutdowns and making sense out of maintenance (Deloitte, 2022).

For logistics and fuel distribution, AI-based demand forecasting integrated with digital route optimisation slashes inventory risk, lowers emissions, and enhances service delivery. In CGD services, the GenAI solution provides real-time tracking of pipeline stress, predictive leakage detection, and early warning for anomalies such as corrosion or pressure drop. Digital Twins model the behaviours of entire gas networks under different loads and emergency situations so that operators can experiment with and perfect response strategies without compromising safety (World Economic Forum, 2020; Capgemini, 2021).

Secondly, on the retail business side, AI-supported chatbots and behaviour modelling tools increase responsiveness and payment recovery and optimise load balance. Predictive analytics inform preventative maintenance for smart meters and contribute to increased system reliability. Synthetic data generation with GenAI also allows the training of AI models in cases where real-world data is sensitive or scarce, which is particularly critical in regulated space, such as CGD (IBM, 2023).

Taken together, coupling Generative AI and Digital Twins marks a transition that could make downstream energy systems smarter and more resilient, not just in terms of efficiency but also to adapt to the challenges of tomorrow.

2. Objective of the study

This paper discusses how Generative AI and Digital Twin technologies can streamline operations, predictive maintenance, and customer engagement in the downstream oil and gas value chain, including City Gas Distribution (CGD) networks. These technologies enhance asset lifecycle management, service delivery, and strategic operations by leveraging advanced simulations, data-driven predictions, and intelligent decision support

systems. The research demonstrates the combined application of Generative AI models and Digital Twins to deliver transformational potential, enabling enhanced operational resilience, more efficient maintenance strategies, and agile, customer-centric service models across the downstream energy ecosystem. Through this analysis, the study strives to provide insights about the strategic functions these technologies are fulfilling for operational excellence, predictive maintenance, and customer engagement. It offers significant contributions in this regard by synthesising their actual impact on the business world and their contribution to industrial progress.

3. Methodology

This study is based on a comprehensive review of several news articles and research papers. Content analysis of all relevant texts revealed various insights on what, where, which, why, and how Gen AI and Digital Twins can be used to achieve transformation in the downstream Oil & Gas and CGD business. For the journal papers, well-known databases like Emerald Insight, Elsevier, and Taylor and Francis were searched to source articles from high-ranked journals indexed in Scopus and Web of Science. Only papers in the management domain were included, while those in engineering, environmental science, materials science, and computer science were excluded. Only full-text articles in English were included, and non-peerreviewed publications were excluded. This research adopts a qualitative research approach, involving an extensive search of more than 60 peer-reviewed academic articles, industry reports and case studies that are related to digital transformation from the leading databases, including EBSCO, Google ScienceDirect, IEEE Scholar. Xplore, SpringerLink.

4. Literature Review

The deployment of Generative Artificial Intelligence (GenAI) and Digital Twin technologies within downstream oil and gas and City Gas Distribution (CGD) operations represents a critical advancement in operational management and environmental governance. In these sectors, strategically aligning digital technologies with organisational objectives is

https://economic-sciences.com

ES (2025) 21(2S), 104-114 ISSN:1505-4683

ISSN: 1505-4683

vital for enhancing operational efficiency, predictive maintenance, and customer engagement (World Economic Forum, 2020; Gartner, 2022). Similar to the critical role of Supply Chain Management (SCM) in business operations (Hariyani et al., 2024), the digital transformation of downstream and CGD industries demands precision, as even minor data inaccuracies can lead to significant operational risks and environmental hazards.

Strong stakeholder engagement, including suppliers, employees, and regulatory bodies, is essential for successful digitalisation, reflecting the importance of sustained relationships in SCM (Shruthy,2024). In the context of environmental responsibility, the integration of Digital Twins enables real-time simulation and monitoring of assets, contributing to the optimisation of resource use and reduction of carbon emissions, aligned with the principles of Green Supply Chain Management (GSCM) (Toorajipour et al., 2020).

The application of artificial intelligence (AI), particularly GenAI, within the downstream refining and CGD sectors is proving pivotal for achieving operational efficiency and environmental goals (Riad et al., 2024). Deep learning (DL) and machine learning (ML) models are increasingly utilised to forecast equipment failures, simulate operational scenarios, and optimise energy consumption, thereby making energy operations more resilient, transparent, and sustainable (Attah et al., 2024). As seen in healthcare's shift toward big data-driven GSCM (Sharabati et al., 2023), oil and gas operations are similarly moving toward data-centric management frameworks prioritise environmental monitoring and predictive asset management.

The collaborative use of GenAI and Digital Twins enhances environmental performance, supporting the long-term sustainability of downstream operations (Tao et al., 2019). Technologies such as Iot sensors, AI-driven predictive models, and blockchain for secure data transactions collectively minimise operational risks, optimise maintenance strategies, and reduce emissions (Wu et.al., 2019). Regulatory bodies are increasingly encouraging such transitions to meet green economy objectives,

emphasising the role of innovation in sustainable production and energy management (Yun et al., 2024).

Ensuring transparency and verifiability of AI-driven environmental claims is crucial. Integrating multimodal AI with Digital Twins faces technical barriers, including data interoperability, standardisation, and the high computational requirements for real-time analysis of dynamic operational data (Tao et al., 2019).

The convergence of GenAI, Digital Twins, and blockchain technologies in downstream oil and gas and CGD networks aligns with the opportunities heralded by the Fourth Industrial Revolution (Elahi et al., 2023). Smart asset management systems, ethical sourcing of energy resources, and measurable environmental impact assessments are expected to become standard practice (Zejjari & Benhayoun, 2024). AI will increasingly evaluate sustainable operations against the triple bottom line—people, planet, and profit (Yi et al., 2023), leading to smarter resource selection, process optimisation, and emissions reductions through electric vehicles and automated logistics (Siemens Energy, 2021).

Furthermore, the predictive capabilities of GenAI integrated with Digital Twins are anticipated to play a significant role in disaster management and resilience planning, predicting extreme events such as pipeline failures or supply chain disruptions (Tao et al., 2018). Future research trends suggest the emergence of quantum-augmented AI systems that could revolutionise logistics, energy distribution, and asset monitoring within the downstream and CGD sectors (Fida et al.,2025). Consequently, there will be an increasing demand for professionals with expertise in operational technologies and the application of advanced AI tools (Paliwal et al.,2020).

The implications of cutting-edge technologies, such as Genetic Artificial Intelligence (GenAI) and Digital Twin systems, are gaining momentum in the 'Make in India' story, particularly in India's downstream oil and gas and City Gas Distribution (CGD) segments. The increasing demands of operations, the requirement for predictive maintenance, strict safety standards, and

https://economic-sciences.com

ES (2025) 21(2S), 104-114| ISSN:1505-4683

ISSN: 1505-4683

environmental responsibility have led to very intensive academic and industrial research on these technologies. Through this literature review, we have cross-referenced important studies, frameworks and case analyses to comprehend the significance of GenAI and Digital Twins for operations, maintenance and customer engagement strategies in these sectors.

5. Discussion

5.1 Digital Transformation in Downstream and CGD

The downstream oil and gas space, including City Gas Distribution (CGD), is going through a massive transformation due to the emergence of digital. Due to the increasing need to maximise operational performance and safety, and the growing focus on environmental performance, digitalisation has become a strategic necessity for industry. The World Economic Forum (2020) also mentions that full-scale penetration of digital transformation in the oil and gas value chain may unleash almost \$1.6 trillion value across the oil and gas industry by 2025, mainly driven by cost savings, productivity gains, and enhanced asset management.

Although digital adoption started in the upstream sector, there is evidence that digital transition has accelerated in the downstream and midstream sectors. Capgemini Research Institute (2021) spotlights emerging applications of technologies like AI, IoT, and Digital Twin platforms in significantly enhancing refining processes, optimising fuel logistics and upgrading CGD operations. These digital interventions allow firms to respond more nimbly to market turbulence, regulatory chaos, and changing consumer expectations.

In addition, the Golovina (2020) empirical analysis shows that firms that adopt predictive analytics, real-time monitoring, and intelligent automation have achieved an efficiency gain of 10-20 per cent for refining and delivery operations. This translates into improved inventory management thanks to optimal crude selection, predictive maintenance for critical assets, and better supply chain coordination.

Likewise, operational intelligence (i.e., applying real-time, data-based insights to promote strategic and tactical decision-making) is a point of differentiation in the downstream oil and gas and CGD areas (Deloitte, 2022). Digitisation does more than improve standard performance metrics (e.g., throughput and safety); it also supports decarbonisation targets, aligning with wider Environmental, Social, and Governance (ESG) ambitions (Jones et al., 2023).

Together, these trends indicate a transformation in the industry structure, in which digital becomes integral, not peripheral, in the quest for sustainable and competitive futures for downstream oil and gas and CGD activities.

5.2 Generative AI Applications

Generative Artificial Intelligence (AI) - based on architectures like Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Transformer models (Vaswani et al., 2017) - possesses such advanced capabilities that enable it to outperform traditional predictive analytics. It allows researchers to generate artificial datasets, simulate complex operational contexts, and formulate optimisation models that are especially useful in low-availability data settings, high complexity or strong privacy constraints. For downstream oil and gas and City Gas Distribution (CGD) activities, generative AI powers predictive maintenance, process optimisation, and strategic decision-making. However, its transformative potential notwithstanding, challenges concerning model explainability, data quality assurance, integration with legacy systems need to be tackled for broader adoption in challenging industrial scenarios.

5.3 Synthetic Data Generation

Generating synthetic data is an enabler in domains like City Gas Distribution (CGD) and refinery downstream, where the training of machine learning models is impeded due to data privacy issues and historical data constraints. IBM (2023) adds that synthetic data can emulate scarce and crucial failure modes like pipeline leakages or compressor failures to improve the accuracy and generalisation of

https://economic-sciences.com

ES (2025) 21(2S), 104-114 ISSN:1505-4683

ISSN: 1505-4683

predictive maintenance models. This ability is particularly important for high-risk assets with limited or impossible access to real-world data.

Recent advances show that Generative Adversarial Networks (GANs) are well-suited towards these challenges. Showrov et al. (2024) have shown that GANs can provide meaningful and realistic data for pipeline stress and failure events, which led to an error reduction in the anomaly detection algorithm. Similarly, Elahi et al.(2023) investigated using synthetic data in downstream process optimisations where process upsets have traditionally been rare and thus, limited machine learning model performance. Furthermore, their work demonstrates how synthetic data can go a long way in filling this gap, affording more accurate predictions and better system improvements.

In CGD, and more generally in the context of refining, synthetic data generation not only overcomes constraints caused by the shortage of real-world data but also improves model learning, allowing the handling of more accurate and robust operational models.

5.4 . Operational Simulation

Generative Artificial Intelligence (GenAI) enables the generation of complicated process variations, proving to be highly attractive in the domain of refining and CGD systems. For instance, within refineries, the GenAI models enable simulation of crude blending, heat exchanger network optimisation, and energy recovery prediction to improve process efficiency and flexibility. Kuang et al. (2021) note that these capabilities deliver operational efficiencies and the ability to handle variability in both the availability of feedstocks and product demand to maximise production and economic performance.

In the CGD context, the Genai models advance the management of load disturbance, shutdown on emergencies, gas leakages in pipelines, and their management with strong and weak urban infrastructure constraints. Teng et al. (2024) show that these models can predict the impact of such disruptions on the gas network to help mitigate potential failures and assist in optimising the

response. Through Genai being implemented in the process industry and CGD systems, the decision-making process of refining and CGD systems and risks are improved and optimised, which enables the system to become more resilient to the operation of both foreseeable and unforeseen challenges.

These developments also reinforce GenAI's gamechanging nature in this challenging realm of industrial control, forging the way for enhanced operational stability and efficiency across industries.

5.5 Strategic Decision Support

Deep generative models (GenAI) are also more commonly used in the downstream for market modelling and strategic analysis. They are also used to price risk, predict demand, and forecast the impact of related regulation (S&P Global, 2022). This ability drives strategic agility, enabling organisations to react more agilely to market unknowns and regulatory shifts. By creating a synthetic Marketspace, GenAI allows the exploration of multiple future scenarios, which in turn helps to make better decisions and foster long-term planning.

Other research highlights the role of GenAI in the improvement of market-specific predictions. Shruthy (2024) emphasises that GenAI models, the ones specifically in line with transformers and GANs, have been successfully applied in order to replicate the market dynamics and to optimise pricing strategies. In related works, Schleich (2017) showed that GenAI methods can predict the fitness of demand in energy markets, and, therefore, allow operators to schedule production based on expected demand.

These use cases of GenAI enhance operational effectiveness and give downstream operators a competitive edge in a fluctuating market, illustrating the platform's power as a key to market intelligence and strategic foresight.

5.6 Digital Twin Applications

The development of digital twins has attracted much attention in industrial applications as a dynamic digital replicator for physical assets or activities to be updated on-the-fly with real-time data (Tao et al.,

https://economic-sciences.com

ES (2025) 21(2S), 104-114| ISSN:1505-4683

2019). Digital Twins use sensors, Internet of Things (Iot) devices, and advanced analytics, allowing for the simulation, analytics and optimisation of complex systems. This innovation is especially useful for manufacturing, oil and gas, and City Gas Distribution (CGD) industries, which require real-time monitoring and predictive solutions to increase operational efficiency and reduce outages.

Digital Twins have been used in oil and gas downstream to monitor and optimise refinery operations. For instance, Ali et al. (2024) provided an example of how Digital Twin models are employed to simulate crude oil refining to optimise energy consumption and enhance product quality. These models support predictive maintenance to enable operators to make early predictions of equipment failures and carry out proactive maintenance early on to mitigate against unplanned downtime and extend equipment life.

In CGD, Digital Twin is applied to model and continuously monitor the gas distribution networks. Tengwang et al. (2024) described how Digital Twins can simulate the pipeline possibilities under various operational conditions, helping the operators to discover leaks or pressure issues before they spiral into catastrophic events. Just like we find hundreds of potential uses of the same product for almost every industry, we even think about where it can benefit us the most as consumers. This product, in particular, is not only a step ahead in better efficiency but is also not complicated and hazardous to deal with.

Furthermore, Digital Twins are increasingly interconnected to other technologies, such as Generative AI, to optimise even more predictive and decision-making powers. Jambol et al. (20241) examined the synergistic effect of DT and AI on smart grid operation optimisation, which foresees demand fluctuation and adapts the power distribution accordingly.

Taken together, Digital Twin technology will herald a new age for industrial operations. It will provide real-time visibility, predictive maintenance, and optimisation actions in sectors ranging from transport to logistics.

5.7 Refinery and Asset Management

Digital Twin has become an indispensable facilitator of predictive maintenance for downstream refining, providing commodity-level, real-time monitoring, simulation and optimisation of complex assets and systems. Gartner (2022) highlights that refineries which have adopted Digital Twins in their maintenance ecosystem have realised a 10–15% cut down in maintenance cost and a 20–30% lift in equipment uptime, demonstrating the significant operational and financial benefits.

Some examples demonstrate the disruptive promise of this technological wave. Siemens (2021) has shown that the availability of the Digital Twins of the Catalyst systems in cracker units ensures the continuous monitoring of catalyst deactivation rates, optimisation of the life of regeneration cycles and early identification of degradation of performance, avoiding expensive unplanned shutdowns.

In addition to catalyst systems and heat exchangers, Digital Twins have also been used in modelling rotating equipment, including pumps and compressors, enabling predictive maintenance that is capable of identifying emerging mechanical failure (Schleich et al., 2017). Additionally, IBM (2023) investigated the use of Digital Twin technology for dynamic corrosion monitoring, enabling the accurate prediction of integrity risks related to pipelines and optimising inspection schedules.

The integration of digital twins with machine learning algorithms is broadening predictive possibilities. DebRoy et al. (2020) discussed how AI-enabled digital Twins may support adaptive maintenance strategies to enhance an asset's reliability domain through different operating regimes.

Use of digital twins to redefine maintenance strategies, with a move towards proactive asset management that results in a safer and more efficient downstream.

5.8 Logistics and Distribution

In the fuel logistics and product distribution sector, Digital Twin technology is increasingly used to

https://economic-sciences.com

ES (2025) 21(2S), 104-114| ISSN:1505-4683

ISSN: 1505-4683

optimise logistics operations by simulating transport routes, storage behaviour, and demand variations. With the support of Digital Twins, supply chain bottlenecks can be predicted, dynamic rerouting is possible in response to traffic and weather conditions, and inventory management is enhanced, resulting in consequential efficiency gains, as reported by IBM (2023). A Deloitte (2022) use case revealed that when they linked their Digital Twin Models with AI demand forecasting systems, not only did they see an 8% drop in transportation costs, but also a 5% decline in carbon emissions, achieving double gains in economic and environmental efficiencies.

Likewise, in the City Gas Distribution (CGD) space, Digital Twins of the city-gas network are indispensable tools for enhancing operational resilience and safety management. 679 Capgemini (2021) also reports that with these digital twins, operators can track hot point locations in the pipelines, implement possible scenario leakages, and run emergency response training sessions, all without threat to physical assets or the public. Moreover, Yun et al. (2024) demonstrated that system operators' response to sizeable leaks or infrastructure damages can be improved by simulating various emergency situations, and thus both low-probability but high-impact events, i.e., low-probability but high-impact events, receive a significant boost in incident response capability.

Another recent study points out that there is a growing trend toward using IoT data in Digital Twin, which allows for real-time pipeline conditions, flow rate, and pressure abnormality updates (Kaur et al.,2020). This continual feedback loop improves predictive maintenance programs and aids in maintaining the requisite mandates for increasingly strict regulations involving pipeline safety and environmental responsibility.

Thus, the application of DT technology in logistics and CGD operations is a significant step toward sustainable, resilient, and optimal energy distribution systems.

5.9 Safety and Compliance

The implementation of Digital Twins in City Gas Distribution (CGD) networks has driven safety, operation monitoring, and regulatory reporting compliance to new levels. Accordingly, dynamic simulation of gas flow behaviour, accumulation points, and corrosion pattern predictions using Digital twins can help operators adhere to increasingly stringent safety audit requirements and incident response standards (IBM, 2023).

By continuously interfacing with physical assets in the real world through the integration of sensors, the Digital Twin can detect anomalies in real time, such as pressure variations, shutdowns in flow, or material decay (Mrzyk et al., 2023). This feature provides proactive risk management by scheduling predictive maintenance and quick response to incidents in the heavily populated metropolitan areas where CGD systems operate.

Further, Yi et al. (2023) also point out that digital twins will enable automated compliance reporting by consolidating operational data and simulating system performance for different regulatory cases, thus reducing manual efforts and improving reporting accuracy. Siemens Energy (2021) also noted the application of Digital Twin models in addressing emergency preparedness, where gas network response to leaks and supply outages is simulated to enhance disaster recovery contingency plans.

Up-and-coming studies have shown that combining AI with Digital Twins can also improve predictive safety. Tengwang et al. (2024) showed that AI-enhanced Digital Twins could be used to model rare but high-consequence events, e.g., catastrophic pipeline failures, and would be highly valuable for both proactive planning and probabilistic regulatory risk assessment.

Reduction in Regulatory Compliance Risks CGD operators are also required to adhere to multiple regulations and certifications, often involving third-party inspection and hence have to spend time and resources in demonstrating that their systems were designed, built, and operated based on the compliance requirements. This is where digital twinning technology, with its transparency, can help

https://economic-sciences.com

ES (2025) 21(2S), 104-114 ISSN:1505-4683

ISSN: 1505-4683

significantly reduce the compliance risks. Hence, with a digital twin system in place, CGD networks get optimised in performance and go hand-in-hand when it comes to achieving safety excellence and regulatory compliance in the ever-challenging energy world.

5.10 Incorporating GenAI with digital twins

Recent studies highlight the increasing role of the integrative application of GenAI and DT technologies to enable advanced operational optimisation in industry sectors. The amalgamation of Genai's predictive/simulation powers with Digital Twins' real-time monitoring/dynamic updating capabilities constitutes a strong technological solution to asset management and process improvement (Jones et al., 2022).

For instance, IBM Research (2023) has used GenAI models to simulate multiple tank filling and emptying scenarios when combined with a Digital Twin supporting oil terminal operations. This convergence effort resulted in a 15% increase in operational planning efficiency and significant cost savings in demurrage, demonstrating the quantifiable value of convergence.

In the same line of research, Tengwang et al. (2024) demonstrated that GenAI-augmented Digital Twins were able to replicate catastrophic emergency cases like pipeline bursts and major leaks in various weather and load conditions. These simulations significantly reduced the emergency response times and increased overall network safety robustness. Furthermore, Fida et al. (2025) demonstrated how AI-enhanced Digital Twins in CGD systems enabled stress testing studies under different operational pressures, facilitating stronger maintenance as well as safety schemes.

Emerging literature also suggests the strategic value of GRC (Governance, Risks, Compliance) reporting or control integration for long-term planning. Tao et al. (2018) underscored that thanks to lifelong training on both synthetic and real data, GenAI-embedded DTs can drive adaptable system optimisation, enhancing resilience to operational uncertainties and market disturbances.

As such, the convergence of Generative AI with Digital Twins marks a critical leap forward in predictive intelligence, safety management, and operational performance, particularly in the downstream oil, gas, and CGD sectors.

6. The challenges and further work

However, many interesting challenges remain to be addressed. Interoperability of GenAI in DT is a principal technological obstacle (Gartner,2022). As AI is employed with real-time operational data, the cybersecurity risk factor rises, and strong governance frameworks would be required (World Economic Forum, 2020).

Perceptions and Integrity Consumers need to have confidence in AI-based decision-making processes. Ethical concerns concerning the use of synthetic data, model explainability, and the acceptance of AI-based recommendations must be resolved (IBM, 2023).

In the future, developing physics-informed generative models might link empirical AI models and classical engineering simulations, thereby further improving Digital Twins.

7. Conclusion

The combo of GenAI (Generative Artificial Intelligence) along with digital twin technologies is bringing in a sea change within the downstream oil & gas that includes (CGD) / city gas distribution networks. This class of technologies tackles the added complexity of operations today, providing real-time optimisation, predictive maintenance and better decision-making than traditional approaches could provide. The growing prevalence of regulatory pressures, environmental requirements and customer demands has led the industry to embrace sophisticated technology solutions to accelerate digital transformation in core functional areas.

Generative AI, such as Generative Adversarial Networks (GAN) and large language models (LLMS), make it easier to simulate intricate situations and create artificial datasets. This results in more accurate predictions, more effective process optimisation, and better decision making. In

https://economic-sciences.com

ES (2025) 21(2S), 104-114| ISSN:1505-4683

ISSN: 1505-4683

downstream processing for refining, GenAI can be used to refine crude selection, energy recovery systems, and heat exchanger networks, and in CGD, it provides a real-time means of monitoring pipeline stress and predicting leaks. These attributes benefit not only the aspects of operational efficiency but also the safety and the environment.

Likewise, Digital Twin technology is now invaluable in generating up-to-date virtual models of physical assets, offering continuous monitoring, simulation and optimisation. In refining, Digital Twins give users enormous insight into how machines operate and when they should be maintained, resulting in less unplanned downtime. In CGD, these use cases model gas distribution networks, simulating pipeline performance and pinpointing potential failure points to enhance the safety and resilience of the network. The combination of these technologies is a vital step toward moving from reactive to proactive asset management, a critical step in maintaining optimal operations in today's dynamic energy environment.

Furthermore, where the worlds of GenAI and Digital Twin are colliding, the gains in operational optimisation will only be bolstered. With the ability to predict, provided by AI, and the real-time understanding of Digital Twins, earlier decisions can be made - simulating what-if scenarios, optimising response strategies and making better long-term decisions." For example, it will mean better market modelling, better demand forecasts, and better scenario testing that will also give companies a competitive edge in today's volatile markets. Moreover, Digital Twins' real-time data can be enriched with AI-powered insights to achieve the highest possible level of maintenance planning, asset reliability, and operational expenditure reduction.

Yet, there are also challenges in the adoption of these technologies. Data interoperability between GenAI and the Digital Twin platforms continues to be a major technical challenge, along with securing cyber systems dependent on live data. Also, ethical issues related to the generation of synthetic data and the regulatory recognition of decisions taken by AI require consideration. Activities seeking operation

optimisation will become more accurate due to new models emerging as technologies evolve.

In summary, the convergence of Generative AI and Digital Twin technologies will lead to a new way of operating the downstream oil/gas and CGD networks. These will not only enable the industry to work more efficiently and safely but also give us the ability to innovate faster than ever before to face future challenges. Continued advancements and adoption of these digital tools will be essential for maintaining the energy industry's competitive edge, complying with mandates, and meeting environmental goals.

References

- 8. Ali, Syed & Kale, Geetanjali & Shaikh, Mohammad Shahnawaz & Ponnusamy, Sivaram & Chouhan, Prithviraj. (2024). AI Applications and Digital Twin Technology Have the Ability to Completely Transform the Future. 10.4018/979-8-3693-3234-4.ch003.
- 9. Attah, Rita & Garba, Baalah & Gil-Ozoudeh, Ifechukwu & Iwunayanwu, Obinna. (2024). Enhancing supply chain resilience through artificial intelligence: Analyzing problemsolving approaches in logistics management. International Journal of Management & Entrepreneurship Research. 6. 10.51594/ijmer.v6i12.1745.
- Capgemini. (2021). Digital twins: Adding intelligence to the real world. https://www.capgemini.com/insights/research-library/digital-twins-adding-intelligence-to-the-real-world/
- Debroy, Tarasankar & Wei, Huiliang & Zuback, James & Mukherjee, Tuhin & Elmer, J. & Milewski, J.O. & Beese, Allison & Wilson-Heid, Alexander & De, Amitava & Zhang, W.. (2018). Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science. vol. 92. pp. 112– 224.. 10.1016/j.pmatsci.2017.10.001.
- 12. Deloitte. (2022). *The future of operations: Oil, gas, and chemicals*. https://www2.deloitte.com/content/dam/Deloitt e/us/Documents/energy-resources/us-2022-outlook-oil-and-gas.pdf
- 13. Elahi, Mahboob & Afolaranmi, Samuel & Martinez Lastra, Jose Luis & Pérez García, José. (2023). A comprehensive literature review of the applications of AI techniques through the lifecycle of industrial equipment. Discover

https://economic-sciences.com

ES (2025) 21(2S), 104-114| ISSN:1505-4683

ISSN: 1505-468

- Artificial Intelligence. 3. 10.1007/s44163-023-00089-x.
- 14. Fei Tao, Qinglin Qi, Lihui Wang, A.Y.C. Nee, Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison, Engineering, Volume 5, Issue 4, 2019, Pages 653-661,ISSN 2095-8099, https://doi.org/10.1016/j.eng.2019.01.014.
- 15. Fida, Kinza & Abbasi, Muhammad & Adnan, Muhammad & Iqbal, Muhammad & Ishaq, Irfan & Gasim M. Hassan, Salah Eldeen. (2025). Integration of digital twin, blockchain, artificial intelligence in an IoT Metaverse environment for mitigation and assessment of cascading failure events in smart grids: Recent advancement and future research challenges. 10.31224/4397.
- 16. Gartner. (2022). *Top strategic technology trends* for 2022. Gartner, Inc. https://www.gartner.com/en/newsroom/press-releases/2021-10-18-gartner-identifies-the-top-strategic-technology-trends-for-2022
- 17. Golovina, Tatyana & Polyanin, Andrey & Adamenko, Alexander & Khegay, Elena & Schepinin, Vladimir. (2020). Digital Twins as a New Paradigm of an Industrial Enterprise. International Journal of Technology. 11. 1115. 10.14716/ijtech.v11i6.4427.
- Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2014) Generative Adversarial Nets. Proceedings of the 27th International Conference on Neural Information Processing Systems, 2, 2672-2680.
- 19. Harmendra Hariyani, Poonam Hariyani, Sanjeev Mishra, Milind Kumar Sharma, A literature review on green supply chain management for sustainable sourcing and distribution, Waste Management Bulletin, Volume 2, Issue 4, 2024, Pages 231-248, https://doi.org/10.1016/j.wmb.2024.11.009-
- Huzaifa, A. (2023). Predictive Maintenance of Heat Exchangers Using Digital Twin Models Systematic Literature Review. 10.2118/216700-MS.
- 21. IBM. (2023). AI and synthetic data for safe and responsible

 https://www.ibm.com/cloud/blog/ai-and-synthetic-data
- 22. IBM. (2023). Synthetic data generation: Building trust by ensuring privacy and quality, https://www.ibm.com/products/blog/synthetic-

- <u>data-generation-building-trust-by-ensuring-</u> privacy-and-quality
- Jambol, Dazok & Oludayo, Sofoluwe & Ukato, Ayemere & Ochulor, Obinna. (2024). Transforming equipment management in oil and gas with AI-Driven predictive maintenance. Computer Science & IT Research Journal. 5. 1090-1112. 10.51594/csitrj.v5i5.1117.
- 24. Jones, P., Patel, R., & Miller, S. (2022). AI and digital twin convergence: A new paradigm for asset optimization. *Journal of Industrial Information Integration*, 27, 100293.
- K., Sruthy. (2024). Enhancing Supply Chain Resilience through Artificial Intelligence: A Strategic Framework for Executives. Emerging Science Journal. 8. 1462-1473. 10.28991/ESJ-2024-08-04-013.
- Kaur, Maninder & Mishra, Ved P & Maheshwari, Piyush. (2020). The Convergence of Digital Twin, IoT, and Machine Learning: Transforming Data into Action. 10.1007/978-3-030-18732-3
- 27. KUANG, Lichun & Liu, he & REN, Yili & LUO, Kai & SHI, Mingyu & SU, Jian & LI, Xin. (2021). Application and development trend of artificial intelligence in petroleum exploration and development. Petroleum Exploration and Development. 48. 1-14. 10.1016/S1876-3804(21)60001-0.
- Mrzyk, Pascal & Kubacki, Johannes & Luttmer, Janosch & Pluhnau, Robin & Nagarajah, Arun. (2023). Digital Twins for predictive maintenance: A case study for a flexible ITarchitecture. Procedia CIRP. 119. 152-157. 10.1016/j.procir.2023.03.087.
- Riad,M., Naimi, M., & Okar,C.,(2024) , Enhancing Supply Chain Resilience Through Artificial Intelligence: Developing a Comprehensive Conceptual Framework for AI Implementation and Supply Chain Optimization , Logistics 2024, 8(4), 111; https://doi.org/10.3390/logistics8040111
- 30. S&P Global. (2024). Energizing innovation: Exploring AI's impact on the energy industry, *S&P Global Insights*
- Schleich, Benjamin & Anwer, Nabil & Mathieu, Luc & Wartzack, Sandro. (2017). Shaping the digital twin for design and production engineering. CIRP Annals - Manufacturing Technology. 66. 141-144. 10.1016/j.cirp.2017.04.040.
- 32. Sharabati, Abdel-Aziz & Hatamlah, Heba & Bani Ahmad, Ahmad & Sabra, Samar & Daoud, Mohammad. (2023). Big Data Analytics and AI

https://economic-sciences.com

ES (2025) 21(2S), 104-114| ISSN:1505-4683

ISSN: 1505-4683

- for Green Supply Chain Integration and Sustainability in Hospitals. WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT. 19. 1218-1230. 10.37394/232015.2023.19.111.
- 33. Showrov, Atif & Aziz, Md & Nabil, Hadiur Rahman & Jim, Jamin & Kabir, Md & Ph. D., M. & Asai, Nobuyoshi & Shin, Jungpil. (2024). Generative Adversarial Networks (GANs) in Medical Imaging: Advancements, Applications and Challenges. IEEE Access. PP. 1-1. 10.1109/ACCESS.2024.3370848.
- 34. Siemens Energy. (2021). Outperform your competition with a comprehensive Digital Twin. Siemens Energy Whitepaper.
- 35. Tao, Fei & Qi, Qinglin & Liu, Ang. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems. 48. 157-169. 10.1016/j.jmsy.2018.01.006.
- Tao, Fei & Zhang, He & Liu, Ang & Nee, Andrew. (2019). Digital Twin in Industry: Stateof-the-Art. IEEE Transactions on Industrial Informatics. 15. 2405-2415. 10.1109/TII.2018.2873186.
- 37. Teng Wang, Ke Feng, Jiatong Ling, Min Liao, Chunsheng Yang, Robert Neubeck, Zheng Liu, Pipeline condition monitoring towards digital twin system: A case study, Journal of Manufacturing Systems, Volume 73, 2024,Pages 256-274,ISSN 0278-6125, https://doi.org/10.1016/j.jmsy.2024.02.006 Pipeline condition monitoring towards digital twin system: A case study
- Teng Wang , Ke Feng , Jiatong Ling , Min Liao , Chunsheng Yang , Robert Neubeck , Zheng Liu ,(2024) , Pipeline condition monitoring towards digital twin system: A case study , <u>Journal of Manufacturing Systems</u>, 73, pp 256-274,

https://doi.org/10.1016/j.jmsy.2024.02.006

- Toorajipour, Reza & Sohrabpour, Vahid & Nazarpour, Ali & Oghazi, Pejvak & Fischl, Maria. (2020). Artificial intelligence in supply chain management: A systematic literature review. Journal of Business Research. 122. 502-517. 10.1016/j.jbusres.2020.09.009.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In *Advances in Neural Information Processing Systems (NeurIPS)* (pp. 5998–6008).
- 41. Vineet Paliwal, Shalini Chandra and Suneel Sharma , Blockchain Technology for

- Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework, Sustainability 2020, 12(18), 7638; https://doi.org/10.3390/su12187638
- 42. Wang,D., Sun, Y., & Lu,J.,(2025), Pipeline leak detection based on generative adversarial networks under small samples, Flow Measurement and Instrumentation, 101, https://doi.org/10.1016/j.flowmeasinst.2024.102745,
- 43. World Economic Forum. (2017). Digital transformation initiative: Oil and gas industry. https://www.opuskinetic.com/wp-content/uploads/2019/06/6.-WEF_Digital-Transformation-Initiative-Oil-and-Gas-Industry.pdf
- 44. World Economic Forum. (2020). *The digital transformation of the oil and gas industry: Pathways and insights.* https://www.weforum.org/reports/digital-transformation-of-oil-and-gas
- 45. Wu, Hanqing & Cao, Jiannong & Yang, Yanni & Tung, Cheung & Jiang, Shan & Tang, Bin & Liu, Yang & Wang, Xiaoqing & Deng, Yuming. (2019). Data Management in Supply Chain Using Blockchain: Challenges and a Case Study. 1-8. 10.1109/ICCCN.2019.8846964.
- Yi, Ziwei & Cao, Xinwei & Chen, Zuyan & Li, Shuai. (2023). Artificial Intelligence in Accounting and Finance: Challenges and Opportunities. IEEE Access. PP. 1-1. 10.1109/ACCESS.2023.3333389.
- 47. Yun, J., Kim, S., Kim, J.(2024), Digital Twin Technology in the Gas Industry: A Comparative Simulation Study, *Sustainability* 2024, *16*(14), 5864; https://doi.org/10.3390/su16145864
- 48. Zejjari, A., & Benhayoun, A. (2024). Blockchain applications for sustainable supply chains: A future perspective. *Sustainability, 16*(1), 210. https://doi.org/10.3390/su16010210