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Abstract- In recent years, the world has witnessed exceedingly high dynamism in nature’s behavior including 

tsunami, landslide, flood and fire. More specifically, the events of landslide have become frequent globally, thus 

claiming thousands of innocents lives every year. Landslide prediction requires understanding varied factors like 

geological, geomorphometric, soil, environmental and precipitation features for the specific geography, 

eventually becomes a complex task. The increasing severity of landslide has alarmed academia-industry to 

develop robust and reliable landslide susceptibility mapping and allied prediction solution. Though, advanced 

software computing, satellite technology and data analytics has broadened the horizon for landslide prediction; 

however, it requires optimality of features as well as the learning environment. In the past, numerous approaches 

are developed by using precipitation features like rainfall for landslide prediction; however, merely applying 

standalone feature can’t ensure reliability of the system, especially when global climate pattern is undergoing 

decisive change due to global warming. Considering these factors, this paper proposes a robust hybrid-deep 

learning driven multi-factor sensitive landslide prediction system. The proposed model applies multiple landslides 

influencing factors like geological, geomorphometric, soil, environmental and precipitation to train a 

strategically designed hybrid deep learning model for landslide prediction. To ensure computational efficacy, the 

landslide inventory factors were processed for significant predictor test, which helped retaining the optimal set 

of influencing factors collected from the GIS benchmarks. To train the selected features optimally for learning 

and prediction, a cascade architecture was used, with Long Short-Term Memory (LSTM) networks retrieving 

local features and Bidirectional-LSTM (Bi-LSTM) networks retaining long-term dependency features. The 

suggested model achieves landslide prediction accuracy of 96.38%, precision of 95.19%, recall of 95.33%, and 

F-Measure of 95.56%, according to the simulation data. The suggested model is robust towards real-time 

applications, as confirmed by the mean average error of 0.1109 and the root mean square error value of 0.1860. 

Keywords— Landslide Prediction, Influencing Factor, Hybrid Deep Learning, BI-LSTM, Susceptibility Mapping. 

I.  INTRODUCTION 

In recent years, the world has witnessed exceedingly 

high dynamism in nature’s behavior including tsunami, 

landslide, flood and fire. More specifically, the events 

of landslide have become frequent globally, thus 

claiming thousands of innocents lives every year. 

Landslide prediction requires understanding varied 

factors like geological, geomorphometric, soil, 

environmental and precipitation features for the 

specific geography, eventually becomes a complex 

task. The increasing severity of landslide has alarmed 

academia-industry to develop a reliable landslide 

susceptibility mapping and allied prediction solution. 

In the last few years, landslide susceptibility mapping 

and prediction has emerged as a vital tool for 

identification of landslide regions and its impact. It has 

been helping both environmental monitoring agencies 

as well as government to make proactive plans and 

land-use decisions. In fact, guaranteeing optimality of 

landslide risk prediction model is a challenging task, 

especially when nature’s behavior remains non-linear 

due to global warming conditions. However, 

identifying and modelling the landslide influencing 

factors for a specific geography can help designing a 

landslide prediction model with robust data analytics. 

Yet, retaining the optimal set of landslides influencing 

factors remains a challenge for academia-industries due 

to costly satellite imagery services, continuous 

temporal data demands and spatial geo-stationary as 

well as dynamic information demands [1][2]. In 

addition to the landslide inventory preparation, the 

ambiguity over temporal and geographical details 

makes any prediction model confines to retain 

reliability aspects. The stereotyped quantitative 

assessment of the landslide influencing factors on the 

actual sites is infeasible due to exhaustive 
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measurement. Under such manual measurements, the 

likelihood of human errors cannot be avoided.  

Moreover, nature being dynamic and abstracted in 

nature can’t be predicted merely on the basis of certain 

superficial parameters measured through human 

manual measurements. In this case, identifying 

sufficiently large influencing factors which could have 

direct or indirect impact on landslide susceptibility is 

inevitable towards landslide risk prediction. In the last 

few years, the rise in sensor technologies, satellite 

imagery services and other internet of things (IoT) tools 

have played decisive role in collecting different 

environmental parameters like geological, 

geomorphometric, soil, environmental and 

precipitation and other derived variables, which can be 

applied for automated analysis for landslide 

susceptibility mapping and risk prediction. 

Typically, the landslide susceptibility or risk 

prediction encompasses landslide catalogue (consists 

of the different influencing factors), landslide 

vulnerability mapping, environmental spatio-temporal 

feature extraction, learning models, and model 

evaluation [3][4]. 

 Precise measurements taken by high-tech GPS and 

GIS systems often include the landslide's area, 

position, locations, and parametric boundaries, all of 

which are included in the landslide catalogue [5][6]. 

Remote sensing imagery services, such as Landsat8 

TM images, digital elevation models (DEMs), aerial 

photography, and light detection and ranging 

(LiDAR), can also be used to collect environmental 

information associated with landslides. In addition, it 

is possible to think about using GIS spatial analysis, 

which can give hydrological assessment, map algebra, 

and terrain analysis [7]. In conclusion, GIS is the 

foundation for landslide prediction models because of 

its compatibility with mapping, geographic big data 

analysis, and related data management activities [7]. 

Various prediction tasks have seen a rise in the usage 

of GIS data in recent years [8]. The information value 

model [9], logistic regression [10][11], entropy index 

[12], certainty factor [13][14], analytic hierarchy 

process [15][16], and a few others are based on GIS 

data that can be used to predict landslides. It is worth 

noting that even these state-of-the-art approaches have 

their limits. For example, before learning and 

classification, large feature data needs to be processed 

for a specified statistical distribution.  

Additionally, the need of annotations makes them a 

complex approach and guaranteeing different prior 

knowledge demands, becomes challenging in real-

time applications. Though, machine learning methods 

have performed better results by learning over 

different environmental parameters and allied 

(landslide) influencing factors. Their ability to learn 

over more complex relationship amongst the 

parameters as well as input-outputs make them 

resulting higher accuracy [17-20]. Multiple adaptive 

regression splines (MARS) [21][22], fuzzy logic 

[23][24], artificial neural networks [25], decision trees 

[27-29], random forests [30-32], support vector 

machines [33-35], rule-based approaches [36], multi-

criteria evaluation techniques [37], and so on are some 

of the machines learning-driven solutions that have 

recently emerged.  

However, these approaches are often criticized for 

their limitations such as the need of huge prior 

information including long-term temporal data with 

annotations. Additionally, these approaches can’t be 

able to handle abstracted information learning and 

inter-element association to make more reliable 

prediction. These machine learning methods are 

unable to extract the underlying landslide features 

which can have straight or indirect impact on 

displacement. The recent literatures [38] also indicate 

that the at hand machine learning methods don’t 

consider correlation amongst the sub-regions that 

makes confines reliability of the system under 

dynamic conditions. Moreover, the inherent issues of 

exhaustive computation, local minima, sensitivity to 

the missing data etc. confine their robustness towards 

landslide risk prediction. Unlike machine learning 

methods, deep learning approaches are found superior, 

especially in terms of more fine-grained feature 

learning, minimum convergence issues, higher 

accuracy and lower sensitivity towards missing data 

[38]. Additionally, deep learning methods are more 

capable of extracting inherent and deep features, which 

can make it potential towards landslide prediction. 

Moreover, the least reliance on the supplementary 

knowledge along with its potential to learn amongst 

the extracted local features for better inference makes 

deep learning methods suitable for at hand landslide 

prediction task [39-42]. Though, in the past a few deep 

learning methods like convolutional neural network 

(CNN), long and short-term memory (LSTM) and 
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other recurrent deep models have been used for 

landslide prediction; however, most of the at hand 

solutions either use limited number of environment 

parameters (ex. Rainfall patterns, slope, displacement 

etc.) or employ mainly the local features (Ex. CNN) 

for learning and classification. A few approaches; 

though extract features using deep models, while 

training and classification is done over machine 

learning methods, which makes their efficacy 

suspicious, especially under real-time prediction over 

dynamic conditions. Consequently, a strong deep 

environment that can use both short-term and long-

term dependence traits to forecast landslides is 

essential, as are additional spatio-temporal features 

that define the parameters that influence landslides.A 

landslide prediction system that is both sensitive to 

multiple factors and driven by deep learning is created 

in this research. The suggested methodology trains a 

strategically built hybrid deep learning model for 

landslide prediction by using numerous influencing 

factors, such as geological, geomorphometric, soil, 

environmental, and precipitation, as the name 

suggests.  

To ensure computational efficacy, the landslide 

inventory factors were processed for significant 

predictor test, which helped retaining the optimal set 

of influencing factors collected from the GIS 

benchmarks. The selected features were trained over 

LSTM and Bidirectional-LSTM (Bi-LSTM) networks 

in a cascade architecture, where LSTM retrieved local 

features, while the later (i.e., Bi-LSTM) retained long-

term dependency features to ensure optimality of 

feature for learning and prediction. The suggested 

model obtains an F-Measure of 95.45%, a recall of 

96.57%, a precision of 94.37%, and an accuracy of 

96.72% when it comes to landslide prediction. 

Furthermore, the suggested model is robust towards 

real-time applications, as confirmed by the mean 

average error of 0.0862 and root mean square error 

values of 0.1358.Here is a breakdown of the remaining 

sections of the manuscript that has been provided. 

After introducing the relevant literature in Section II, 

the following section defines the problem. The data 

preparation and deep learning driven prediction model 

are presented in Section IV. Section V then follows 

with results and analysis. Section VI delves into the 

discussion of the overall research conclusions and 

inferences. The list of sources consulted throughout 

this work is detailed in the citation section.  

II.      RELATED WORK 

This section discusses the key recent approaches 

developed towards landslide susceptibility mapping 

and risk prediction. The key purpose of landslide risk 

prediction and allied susceptibility mapping is to 

identify the suitable assessment metrics which can 

have the decisive impact on landslide probability and 

deploy them to model an automated solution for risk 

prediction. Data being the crucial component behind 

landslide risk prediction models have attracted 

academia-industries to achieve suitable set of 

influencing factors for further (risk) analysis. In 

reference to the hypothesis stating that the use of IoT 

technologies can enable multi-sensory driven 

(influencing) landslide data (say, influencing factors) 

collection, Joshi et al. [1] applied edge computing 

technique to collect landslide data for risk analysis. Li 

et al. [2] on the other hand performed quantitative 

assessment to identify landslide influencing factors. 

To be more precise, the authors used GIS [2] 

technology to determine the rainfall intensity-duration 

threshold condition, and then applied it to the landslide 

probability model. Nevertheless, according to data 

collected from landslide events by NASA and other 

environmental monitoring agencies, such as the 

Geographical Survey of India (GSI), a wide range of 

factors, such as slope pattern, soil type, curvatures, 

solar radiation, valley depth (VD), terrain ruggedness 

index (TRI), vector ruggedness measure (VRM), 

stream power index (SPI), topographic wetness index 

(TWI), length slope (LS), topographic position index 

(TPI), land use, normalized difference vegetation 

index (NDVI), lithology, soil, distance to fault, 

distance to river, distance to road, fault density, river 

density, road density, etc. [43]. Remondo et al. [44] 

used spatial data to estimate the likelihood of 

landslides; they developed quantitative hazard models 

by plugging in historical landslide information, 

landslide frequency, and size. Landslide risk 

prediction using stacked auto-encoder (SAE) was done 

efficiently by Tan et al. [4]. The authors asserted that 

their method outperformed traditional machine 

learning techniques such as radial basis functions 

(RBF) and artificial neural networks (ANN) [45].  
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Goyes-Peñafie [46] applied landslide susceptibility 

index by employing both discrete as well as continuous 

data for landslide susceptibility prediction. The 

authors applied logistic regression (LR) and weights of 

evidence (WoE) approach to perform feature learning 

and classification. Though, to improve prediction 

reliability, especially under missing data conditions, 

Utomo et al. [46] applied LSTM deep network for 

landslide prediction. Despite their efforts, the accuracy 

of 90% questions its reliability for real-time 

applications. Though, the efforts by Liu et al. [48] 

resulted better performance by applying LSTM with 

gated recurrent units for landslide displacement 

analysis. Srivastava et al. [49] applied rainfall 

information (i.e., rainfall threshold index) for landslide 

prediction. To predict rainfall and, by extension, the 

likelihood of landslides, their method involved 

mapping the acquired rainfall index or measurements 

to several machine learning algorithms, such as back-

propagation neural networks (BPNN), support vector 

regression (SVR), and long short-term memory 

(LSTM).  

The IoT sensory driven rainfall-induced landslide 

prediction model was developed by Khaing and Thein 

[50], where the collected rainfall measurements and 

corresponding thresholds were applied to LSTM 

network for landslide prediction. Napoli et al. [51] 

considered a set of 13 predisposing influencing 

factors, which were later trained by using ANN, 

generalized boosting model and the maximum entropy 

approach to perform landslide susceptibility mapping 

and allied risk prediction. To improve prediction 

reliability, Dou et al. [52] designed an ensemble 

learning approach encompassing SVM with Boosting 

and staked learning framework for landslide risk 

prediction. Liang et al. [53] assessed different 

landslide susceptibility mapping approaches, where 

they found that the use of gradient boosting decision 

tree (GBDT) algorithm can yield superior results; yet 

the authors failed in exploiting large set of landslides 

influencing factors. Additionally, it doesn’t consider 

long-term dependency amongst the influencing factors 

to make learning and prediction more realizable. Ma et 

al. [54] assessed relative performance of the image-

based landslide risk prediction model, landslide 

sensitivity analysis and landslide early warning 

systems by applying machine learning methods. 

Despite being a review effort, the authors failed in 

identifying suitable set of influencing factors towards 

landslide prediction. Liao et al. [55] applied grey wolf 

optimization method processed over trend 

displacement and periodic displacement information 

to perform landslide risk analysis. The authors found 

that the periodic displacement can be an indicator for 

landslide risk models. In contrast, Li et al. [56] used an 

autoregressive motion-averaged time series model to 

estimate parameters linked to landslides through auto-

correlation. In addition, the inferred displacements 

were also fitted using the parametric correlation 

approach. After that, in order to anticipate the risk, we 

looked at the correlation between the influencing 

factor and the values of landslide displacement. The 

important non-stationary features associated with 

landslide displacement are ignored by classical 

landslide prediction models, according to Huang et al. 

[57].  

They applied a discrete wavelet transform (DWT) 

feature driven extreme learning machine (ELM) which 

was designed on the basis of the chaos theory to predict 

landslide displacement. The authors applied time-

series data pertaining to the displacements in landslide 

for risk prediction. However, it failed in exploiting 

other geological conditions and precipitations which 

cause displacement. Considering such limitations, 

Research by Cao et al. [58] made use of correlations in 

response between data on landslide deformation, 

rainfall, reservoir water level, and groundwater level.  

The landslide influencing factors were trained over 

ELM to perform risk prediction. Moreover, an 

empirical mode decomposition driven ELM model 

was designed by Cheng Lian et al. [59] to perform 

landslide displacement prediction. The other neuro-

computing variant named BPNN was applied in [60] 

to learn slope information to predict landslide slope 

deformation analysis. Despite higher accuracy, 

training a model with merely one slope pattern data 

can’t provide a reliable risk analysis solution. 

Moreover, the aforesaid machine learning driven 

solutions require a large set of input data and 

corresponding annotations to perform landslide 

prediction, which can be very complex and 

challenging task in real-time applications. The ability 

of deep networks for fine-grained data learning over 

limited inputs with minimally possible hyper-

parameters tuning make them suitable for at hand LSM 

and allied risk prediction tasks.  
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Considering the limitations of the existing machine 

learning-based methods, recently a few efforts have 

been made by exploiting deep network [61-66]. Zhang 

et al. [61] designed an attention based temporal CNN 

for landslide risk prediction. To improve reliability, 

the authors focused on exploiting landslide instability 

margins (LIMs) for which an attention-based CNN 

was designed. Here, attention model was applied to 

retain long-term dependency. Pairwise separable deep 

features were trained by using random forest classifier 

(Yilmaz et al. [62]). Xu et al. [63] developed a model 

for landslide displacement prediction using variational 

mode decomposition (VMD) and long short-term 

memory (LSTM). To begin, this approach used VMD 

to break down the total displacement data, which then 

yielded time-series environmental effect variables like 

rainfall and water level. In order to conduct risk 

prediction, these details were then trained over LSTM. 

The use of deep learning and machine learning 

techniques to learn about geo-environmental variables 

like lithology, soil texture, land use/cover, slope angle, 

slope aspect, topographic wetness index, distance from 

road, distance from streams, distance from lineaments, 

convergence index, profile and plan curvatures, and 

more was recently demonstrated in a case study of 

landslide risk assessment in the Indian western ghats 

[64]. In spite of a lot of work, the authors were unable 

to keep long-term dependency, which would have 

made the system more reliable in the long run. For the 

purpose of landslide prediction in Pakistan, Mubashar 

et al. [65] utilized a number of characteristics, such as 

surface pressure, specific humidity, surface runoff, 

rainfall, root level soil moisture, 10 cm soil moisture, 

average temperature, transpiration, wind speed, aspect, 

slope, and elevation. In order to forecast landslides, the 

authors used LSTM to extract features, and then they 

used ANN-based classification. After using artificial 

neural networks (ANNs) for classification, Liu et al. 

[66] used gated recurrent units (GRUs) to learn spatial 

features.  

Though, GRU acted as a textural feature extraction 

model for further learning; however, the limited 

features can confine overall performance.  

III. PROBLEM FORMULATION 

Landslide prediction has emerged as one of the most 

decisive and significant approaches for environmental 

geostatistical monitoring and surveillance. The rising 

events of landslide globally and resulting loss-of lives 

and economy has alarmed researchers to achieve a 

robust landslide prediction system. In this reference, 

though a number of efforts have been made in the past; 

however, the solutions based on machine learning and 

deep networks have performed satisfactorily. Despite 

innovations, machine learning methods often undergo 

adversaries like the need of huge annotations, local 

minima and convergence that confine them for a real-

time solution, especially with large datasets 

encompassing geological, geomorphometric, soil, 

environmental and precipitation. Though, to alleviate 

it, in the past a few machines learning-based methods 

are proposed with reduced number of landslides 

influencing factors such as rainfall, slope, vegetation, 

soil types, etc. However, most of the at hand solutions 

either undergo limitations because of limited features 

(say, landslide inventory or allied influencing factors) 

or inability to learn optimally over large inputs. On the 

contrary, applying image-data has always remained 

costly and computationally exhaustive. To alleviate it 

a robust solution improving both features as well as 

computing environment can be vital. The methods 

applying multiple parameters have performed 

reasonably better in comparison to the machine 

learning based landslide susceptibility mapping 

approaches. However, almost major solutions learn 

over the local features derived from each (landslide) 

influencing factor, and hence their (say, inter-

component or between the influencing factors) long-

term dependency has never been addressed. On the 

contrary, under uncertain nature merely applying 

shallow features or superficial (local) features can’t 

guarantee optimality of a solution. Moreover, under 

multi-parametric setup (say, with geological, 

geomorphometric, soil, environmental and 

precipitation features and others) retaining 

computational efficacy is equally important. In sync 

with these key research challenges and allied scopes, 

in this paper a hybrid-deep learning driven multi-factor 

sensitive landslide prediction system was developed. 

The proposed model focused on improving both 

features and computing environment. As feature 

environment a large number of influencing factors 

were obtained from the landslide inventory data. 

Moreover, the use of Wilcoxon Rank sum method 

retained optimal set of influencing factors towards 

landslide prediction. In particular, sixteen factors were 

identified by the proposed feature selection model as 
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having an impact. These factors include orientation, 

slope angle, height above sea level, curvature, profile 

curvature, plan curvature, solar radiation, valley depth, 

terrain ruggedness index, stream power index, 

topographic wetness index, length slope, topographic 

position index, land use, normalized difference 

vegetation index, lithology, soil, and rainfall. A hybrid 

deep network consisting of LSTM and Bi-LSTM was 

fed the retrieved features as input. This research 

utilized Bi-LSTM, which was trained on LSTM 

extracted features to retain long-term dependency, as 

opposed to classical approaches that merely apply 

CNN or LSTM deep networks for feature extraction 

(they can merely exploit word-level local features). 

Consequently, the suggested LSTM and Bi-LSTM 

model was able to attain optimal learning and 

classification by being trained over both local and 

global features, such as the long-term dependency 

among the influencing elements. 

IV. SYSTEM MODEL  

The suggested model and its related sequential 

implementation are covered in detail in this section. 

All things considered, the procedure includes these 

stages: 

Phase-1 Data Collection  

Phase-2 Significant Predictor Test 

Phase-3 Landslide Influencing Factors Identification 

Phase-4 Hybrid Deep Learning based Landslide Risk 

Prediction. 

The following sections provide a comprehensive 

analysis of the suggested model. 

A. Data Collection 

The landslide inventory map and the identification of 

related influencing parameters are the primary topics 

of this part. 

a. Landslide Inventory Map  

This is the matter of fact that preparing the landslide 

inventory map information pertaining to a specific 

geography is a challenging task, and therefore in this 

work the secondary data availble at the different 

standard benchmarks including Kaggle, NASA and 

Geographical Survey of India (GSI) were taken into 

consideration. In this reference, at first that landslide 

distribution map was prepared before performing 

landslide modelling, as this study hypothesizes that the 

future probability of landslide in future is highly in 

sync with the (landslide) conditions in the past [67]. 

Thus, learning over the previous landslide conditions 

the future probability of landslide can be predicted by 

exploiting different spatio-temporal information. It 

signifies that learning over specific topographic, 

geological, hydrogeological and climatic conditions 

for a target region, one can predict the likelihood of 

landslide. A recent study by Galli et al. [68] has 

inferred that the scalability and perfection of a 

landslide inventory map can have the decisive impact 

on accurate landslide risk prediction models. Though, 

the literatures identified a total of 118 landslide 

influencing factors, there used to be certain more 

decisive element having impact on landslide 

probability. This study applies the data constructs as 

suggested in [69], where the authors have applied 175 

landslide locations; however, post significant predictor 

test a total of 16 features were retained. A snippet of 

these selected features is given as follows: 

b. Landslide Influencing Factors  

For the purpose of landslide risk prediction, this study 

considered sixteen features for additional learning and 

classification. These key features are: 

1. Slope angle,  

2. Aspect,  

3. Elevation above sea level,  

4. Curvature,  

5. Solar radiation,  

6. Valley depth (VD),  

7. Terrain ruggedness index (TRI),  

8. Vector ruggedness measure (VRM),  

9. Stream power index (SPI),  

10. Topographic wetness index (TWI),  

11. Topographic position index (TPI),  

12. Land use,  

13. Normalized difference vegetation index (NDVI),  

14. Lithology,  

15. Soil,  

16. Rainfall.   

A snippet of these key variables is given as follows:  

1. Slope Angle 

A number of literatures [70][71] reveal that the 

likelihood of landslides is higher over steeper slope 

angle. In other words, with rising shear stresses the 
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slopes turns steeper and hence increases the likelihood 

of landslide. The presence of soil often undergoes 

sliding over increasing slope angle and hence once the 

angle reaches more than 25 degrees, the soil starts 

losing grip to the ground and hence results landslide. 

In this work, the slope angle was obtained by means of 

the digital elevation model (DEM), which was 

classified into multiple intervals encompassing, 0–13, 

14–22, 23–30, 31–42, and >43 degrees.  

2. Aspect 

Even while factors including soil moisture 

concentration, sunshine, dry winds, rainfall, and 

discontinuities are affected by the slope direction, 

landslides can still occur regardless of the slope 

direction [72]. The overall input observations were 

classified into multiple classes in this work. These 

classes included flat (1-39.00), north (39.00-79.00), 

northeast (79.00-119.00), east (119.00-159.00), 

southeast (159.00-199.00), south (199.00-239.00), 

southwest (239.00-279.00), west (279.00-319.00), and 

northwest (319.00-359.00). DEM was used to extract 

aspect information. 

3. Elevation 

Indirect associations are common when discussing the 

relationship between height and landslides; that is, 

landslides can be caused by elevation in conjunction 

with other secondary influencing parameters [73].  

The altitude related influencing component of each 

geographic region used to be a distinct layer that gives 

rise to the slope instabilities. Elevation indirectly 

measures numerous causes giving rise to the landslides 

like rainfall patterns (say, annual and heavy rainfall 

pattern), temperature, changes in the frost conditions, 

ice melting, etc. [74]. Let the elevation limit of the 

target location be 2328 m (maximum) and 750 m 

(minimum), then the variance in elevation would be 

1500 m. The elevation was measured using the DEM 

method and classified into eight groups: (1) 750-1000, 

(2) 1000-1200, (3) 1200-1400, (4) 1400-1600, (5) 

1600-1800, (6) 1800-2000, (7) 2000-2200, and (8) 

2200-2500.  

4. Curvature  

Often referred to as a curvature map, it displays the 

degree to which the surface deviates from a flat 

surface. Alterations to the convexity and concaveness 

of a slope can be represented using curvature maps 

[75]. Also, the positive concavity provides the convex-

pixel surface with a representation of the slope's 

curvature, which in turn represents the topography's 

shape.  

On the contrary, the negative concavity signifies the 

surface with the concave pixels. On the contrary, the 

zero concavity refers the surface with no slope and 

remains straight (also called Flat or Straight 

concavity). Thus, the aforesaid three kinds of slope 

shapes possess decisive impact on slope instability, 

especially because of surface’s concentration and 

diffusion. Moreover, the subsurface water flow over 

the slopes too give rise to landslide [76]. This study 

used the lengths between successive topographic lines 

in the GIS to determine the aforementioned concavity 

and convexity, which are relevant to the slope's 

curvature map. To obtain the curvature map data 

mentioned earlier, we used a DEM that was specific to 

the area of interest. There were five groups into which 

the measurements fell: (1) extremely concave (51.20–

3.79), (2) concave (3.79)–1.12, (3) flat (1.12)–(0.54), 

(4) convex (0.54)–(3.21), and (5) very convex (3.21)–

(33.9). 

5. Solar Radiation 

The intensity of solar radiation is just the mean 

convergence per pixel over one year. Kilowatt hours 

per square meter is the unit of measurement. A greater 

amount of vapour relative to the surface of the soil is 

indicated by a higher value of solar radiation. 

 This parameter even helps in controlling the extent of 

vegetation on the target slope condition. With lower 

slope and low radiation, higher vegetation can be 

observed that eventually helps in stabilizing the slope. 

In this work ArcGIS technology with DEM method 

was applied to classify solar radiation pattern in the 

following classes: (1) 80,000–43,000, (2) 440,000–

540,000, (3) 550,000–630,000, (4) 640,000–700,000, 

and (5) 710,000–810,000.  

6. Vector Ruggedness Measure (VRM) 

It opens the door to a method for estimating the 

roughness of nearby terrain. In this case, it combines 

data on slope and aspect into a single metric, which is 

then used to separate the terrain's roughness from its 

slope or elevation. First, 0-0.0302; second, 0.0303-

0.0795; third, 0.796-0.151; fourth, 0.152-0.274; and 

fifth, 0.275-0.699 were the categories into which we 
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placed the VRM map after applying DEM in SAGA 

GIS program.  

7. Valley Depth 

It is often considered one of the decisive and basic 

influencing factors for landslide susceptibility 

mapping problem. Using the SAGA GIS program, we 

measured the valley depth index using DEM. The 

following classes were obtained by exporting the 

values to ArcGIS: (1) 0-37.9, (2) 38-87.7, (3) 87.8-

149, (4) 150-233, and (5) 234-508 m. 

8. Stream Power Index (SPI)  

It stands for the criteria, derived from the DEM study, 

that can affect the likelihood of landslides. The erosive 

strength of run-off from slope surfaces is also 

indicated. The following model is used to derive it 

mathematically (1). 

𝑆𝑃𝐼 = 𝐴𝑠 × tan𝛽 (1) 

In (1), 𝐴𝑠 be the specific basin area, while the slope 

angle is given by tan 𝛽. Here, we applied DEM with 

SAGA GIS software, and the outputs were further 

processed by ArcGIS to identify five different 

intervals in the SPI layer. These were: (1) 0–1510, (2) 

1520–1600, (3) 1610–3110, (4) 3120–26,500, (5) 

26,600–390,000. 

9. Topographic Wetness Index (TWI)  

Soil moisture distribution patterns can be described 

using this theoretical element, which specifies the 

accumulation of flow at a specific time in a watershed. 

Higher levels of TWI are typically used in landslide 

bodies, but it is generally used for topographic control 

of hydrological processes. According to (2), TWI was 

calculated mathematically.  

𝑇𝑊𝐼 = 𝐿𝑛 (
𝐴𝑠

tan 𝛽
) 

(2) 

The slope angle at a given position is denoted by 

tan⁡β in equation (2), and A_s is the total drainage 

upstream area at that point. The following categories 

were used to categorize TWI: (1) 0.0895-2.62, (2) 

2.63-3.32, (3) 3.33-4.15, (4) 4.16-6.26, and (5) 6.26-

10.70. 

10. Terrain Ruggedness Index (TRI) 

The triangle inequality (TRI) is defined as the height 

difference between a single pixel and its neighboring 

eight pixels, as determined mathematically in (3). 

  

𝑇𝑅𝐼 = √∑𝑍𝑀𝐷

8

𝑝=1

 

(3) 

For equation (3), let ZMD be the mean difference of 

eight pixels around each pixel and p be the number of 

pixels dispersed among the regions. First, 0-2.64, 

second, 2.65-4.75, third, 4.76-7.74, fourth, 7.75-13.4, 

and fifth, 13.5-44.9 were the categories into which we 

mapped the TRI index. 

11. Topographic Position Index (TPI)  

The TPI makes comparison of the height of each pixel 

with the specified pixel around (in the digital elevation 

model (DEM)). In order to calculate TPI, we used (4), 

which involves comparing the average height of 

nearby cells to the height of each individual cell in a 

DEM. As time goes on, the average height drops below 

the central value. A positive TPI indicates that the 

value of the region is greater than the value of the 

surrounding points.  

On the contrary, negative TPI signifies areas lower in 

comparison to the corresponding surroundings. 

Moreover, the 0 and near-0 values signifies flat areas, 

with the slope nearing zero (as well as those areas with 

a definite slope value). 

𝑇𝑃𝐼 = 𝑍0 − ∑ (
𝑍𝑛

𝑛
)

𝑛−1

 
(4) 

In (4), 𝑍0 refers the point height under assessment. The 

second point, Z_n, is the height of the grid, and n is the 

total number of nearby points that were evaluated.  

In this work, TPI was classified as the following 

classes: (1) (-75.7)–(-9.77), (2) (-9.77)–(-2.83), (3) (-

2.83)–(2.94), (4) (2.94)–(11.03), and (5) (11.03)–

(71.7). 

12. Land Use/Land Cover 

It signifies the slope’s instability that influences the 

land-behavior and undergoes dynamism. The GSI land 

use map was used to obtain the land use layer for this 

project. Woodland, semi-dense forest, low-dense 
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forest, semi-dense/dense pasture, and dry-farming are 

the land use/cover classes categorised here. 

13. Normalized Difference Vegetation Index (NDVI)  

The NDVI illustrates the viability to measure growth 

and the levels of vegetation in the target region. Here, 

we measured NDVI by applying equation (5). 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

(5) 

In this case, we used the values (-1) and (+1) for the 

NDVI index's minimum and maximum, respectively. 

Classes of NDVI that we mapped are as follows: (1) (-

0.351)-(-0.064), (2) (-0.064)-(0.008), (3) (0.008)-

(0.099), (4) (0.099)-(0.260), and (5) (0.260)-(0.759). 

14. Rainfall 

The onset of landslides is unquestionably influenced 

by the severity and length of rainfall.  

In this work, the rainfall data was obtained from the 

different meteorological stations distributed over study 

regions (GSI meteorological data). We applied the 

inverse distance weighting (IDW) concept to achieve 

rainfall map, which was classified into the following 

classes: (1) 438–440, (2) 440–480, (3) 480–520, (4) 

and 520–560. 

15. Lithology 

Lithology is found to have the very strong impact on 

slope stability and bedrock types. To measure the 

susceptibility of various lithological formations 

causing landslides, in this work lithological units were 

extracted from GSI datasets available for public 

access, where the scale was taken as 1:100,000. The 

total lithological units were obtained from the different 

regions and were classified into 8 different classes.  

16. Soil Texture 

Soil texture influences permeability and cohesion 

characteristics of the soil, which can have the decisive 

impact on soil movement and hence landslides. By 

removing organic mats (for example, horizon C) and 

horizon A, landslides alter soil properties by exposing 

native material [84]. Soil texture changes occur as a 

result of landslides shifting or removing materials 

from different locations [85]. In order to quantify soil 

texture using the hydrometric technique, several soil 

samples were taken from different lithological units. 

Soil texture triangle was used to organise textures in 

this study. Here, we divided the soil map into five 

categories: (1) Silty Loam, (2) Clay Loam, (3) Loam, 

(4) Sandy Loam, and (5) Silty Clay.In addition to the 

characteristics already mentioned, such as the 

proximity to the fault, the river, the road, and the 

density of the fault, river, and road. That way, we could 

save 25 input features for our significant predictor test. 

The features that were collected were subsequently 

subjected to processing utilising the Wilcoxon Rank 

Sum Test and Bi-LSTM for learning and feature 

extraction. Presented below is a brief overview of the 

feature selection process that is driven by significant 

predictor tests.  

B. Significant Predictor Test (SPT) 

One of the predominant problems, which were not 

addressed by many researchers in landslides prediction 

domain is the retention and/or identification of the 

most significant influencing factors towards 

(landslides risk) prediction. Though, the input 

environmental data collected were in dozens to ensure 

computationally efficient and more time efficient 

prediction solution, we performed significant predictor 

test to retain the set of most vital features. In this work, 

significant predictor test applied correlation amongst 

the collected landslide inventory data (say, the derived 

influencing candidate parameters) to measure level of 

significance of each (influencing factor) parameter. In 

this case, we used the Wilcoxon Rank Sum technique 

to assess the degree of association between the 

collected environmental factors and the factors that 

had an impact. Each potential factor was treated as an 

independent variable, with the landslip prediction label 

serving as the dependent variable. We kept the 

parameters that had an impact greater than the level of 

significance (here, we used a level of significance of 

p=0.05) after we retrieved the level of significance for 

each feature element; we eliminated the others. 

 In this manner, the proposed model identified a set of 

16  features representing the vital landslide factors 

which have been passed to the proposed cascaded 

hybrid deep model.  

C. Hybrid Deep Model Driven Learning  

In this research the emphasis is made on learning over 

both local as well as long-term dependency features 

from the identified landslide influencing factors and 

therefore a hybrid deep network is designed by 

cascading LSTM with Bi-LSTM network design. In 
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this research, we demonstrated how the Agentic 

Workflow approach might improve LLMs' ability to 

recognise emotions in tweets written in more than one 

language. In addition to improving decision-making 

accuracy, asking LLMs to explain their decisions 

openly can help humans understand them better. 

Because it sheds light on how these complicated 

systems function, explainability is, in our opinion, 

very important in real-world applications. However, 

we need to be wary of the dangers of employing LLMs 

in subjective tasks; these models could be wrong but 

give the impression of being confident. In the future, 

we hope to investigate how Agentic Workflows can be 

used to a wider range of sentiment analysis and natural 

language processing domains.  

The detailed discussion of the deployed LSTM and Bi-

LSTM network in a cascade architecture is given in the 

subsequent sections.  

A. LSTM Network  

The vanishing effect and the inflating gradient are two 

issues that classical recurrent neural networks have, 

and the LSTM deep learning model was conceptually 

created to solve these problems. Input, forget, and 

output gates are the building blocks of long short-term 

memory (LSTM) circuits (Fig. 1). The forget gate f_t 

in the shown LSTM model (Fig. 1) determines whether 

to remember the information from the previous state 

(c_(t-1)) or throw it out.  

To achieve it, the LSTM learns over the input (𝑥𝑡) and 

the hidden state (ℎ𝑡−1) . Thus, the measured value 

often gives output as binary, (i.e., 0 or 1) signifying 

whether to retain or drop the information. In this case, 

the input gate (i_t) determines whether the cell's status 

should be set to 0 or 1 based on the levels of data 

associated with x_t and h_(t-1). The mathematical 

function on c_(t-1), f_t, and i_t is used to measure the 

cell state in Fig. 1, where c_t denotes the result. Here, 

the output gate (O_t) is responsible for updating the 

outcomes as 0 or 1 and controlling the flow of 

information from the current cell state to the concealed 

state. Assuming t is the current time and x_t is the input 

to the long short-term memory (LSTM), the previous 

hidden state (h_(t-1)) and corresponding previous cell-

state (c_(t-1)) would be, respectively. Let c_t stand for 

the present state of the cell and h_t for the current 

output at the hidden state. Hence, this LSTM structure 

may be used to determine the different gate elements 

and their outputs according to (6-10). 

  

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑓ℎℎ𝑡−1 + 𝑏𝑓) (6) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖ℎℎ𝑡−1 + 𝑏𝑖) (7) 

𝑐𝑡 = 𝑐𝑡−1 ⊙ 𝑓𝑡 + 𝑖𝑡
⊙ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑥𝑡

+ 𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐) 

(8) 

𝑂𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑐ℎℎ𝑡−1 + 𝑏0) (9) 

ℎ𝑡 = 𝑂𝑡𝑡𝑎𝑛ℎ(𝑐𝑡) (10) 

In (6-10), 𝑥𝑡 ∈ 𝑅𝑛  be the input landslide influencing 

factor’s feature vector, 𝑊 ∈ 𝑅𝑣∗𝑛 , 𝑏 ∈ 𝑅𝑣 . In this 

case, the superscript variables v and n stand for the 

input vector's dimensions and the number of feature 

items in the input data, respectively. 

Sigmoid Sigmoid tanh Sigmoid

tanh

C_t-1

h_t-1

x_t

f_t i_t o_t

f_t C_t-1
C_t

h_t

h_t

 

Fig. 1 LSTM network 



 

 

Economic Sciences 
https://economic-sciences.com 

ES (2025) 21(1), 153-173 | ISSN:1505-4683 
  

 

163 
 

Literatures reveal that the classical recurrent neural 

networks including LSTM and CNN performs better 

for local feature extraction. On the contrary, in this 

work where we intend to exploit multiple correlated 

influencing factors for landslide prediction, learning 

their inherent or latent associations or dependency is 

inevitable to ensure reliable landslide prediction. 

Considering this fact, we designed a cascaded deep 

architecture by strategically amalgamating LSTM with 

Bi-LSTM network. In the proposed hybrid deep 

network (model), the LSTM was designed in such 

manner that the maximum pooling layer of the LSTM 

was replaced with BI-LSTM which learns over the 

LSTM extracted features to retain long-term 

dependency or global features for more accurate 

landslide prediction.  

In
pu

t 
La

ye
r

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Input Layer Embedding Layer Bi-LSTM Layer Max-Pooling Concatenate 

Output

 

Fig. 2 Bi-LSTM Layer 

To learn and classify, the created hybrid deep model 

uses both global and local features, much like a 

cascade model. The Bi-LSTM learns from the LSTM 

layer's outputs to produce finer-grained latent features, 

which are then combined at the global average pooling 

layer for classification and additional learning (at the 

Softmax layer). The following is a sample of the 

applied Bi-LSTM network's layers: 

a. Input Layer 

As stated above, Bi-LSTM being a supplementary 

layer substituted at the Max-pooling layer of 

(deployed) LSTM learns over the LSTM’s extracted 

feature (say, the input vector 𝑥𝑡 ). Consider, 𝑤1, 

𝑤2, 𝑤3, … , 𝑤𝑣  be the number of features (say, the 

feature extracted from each landslides influencing 

factors) 𝐷 = 𝑑1, 𝑑2, 𝑑3, … , 𝑑𝑚. The elements i_1, i_2, 

i_3,..., i_v are all natural non-zero indices that 

contribute to the total. The components mentioned 

above use the symbols 1 and v to denote the first and 

last data indices, respectively. We provide a Bi-LSTM 

model that takes in landslip affecting factors or allied 

feature vectors in a sequential fashion with a 

predetermined window-size. Following this layer is an 

embedding layer, which, when stacked, produces an 

embedding matrix, as shown in (11). This layer 

converts each embedded index to a corresponding real-

valued feature vector. 

  

𝑅 =

𝑟1,1 𝑟1,2
⋯ 𝑟1,𝑛

𝑟2,1 𝑟2,2
⋯ 𝑟2,𝑛

𝑟3,1

⋮
𝑟𝑣−1,1

𝑟𝑣,1

𝑟3,2

⋮
𝑟𝑣−1,2

𝑟𝑣,1

⋯
⋱
⋯
⋯

𝑟3,𝑛

⋮
𝑟𝑣−1,𝑛

𝑟𝑣,𝑛

 

(11) 

In equation (11), each row represents a different index 

that represents a component that can cause a unit 

landslip.  

The dimension of the embedding matrix is 𝑣 ∗ 𝑑, 

with the dimension of the data 𝑣 and the dense layer 𝑑. 

To generate the embedding vector, the proposed model 

assigned 𝑑 = 200 . The Bi-LSTM layer, which was 

assigned at the place of the maximum pooling layer of 

LSTM is briefed in the subsequent section.  

1. Bi-LSTM Layer 



 

 

Economic Sciences 
https://economic-sciences.com 

ES (2025) 21(1), 153-173 | ISSN:1505-4683 
  

 

164 
 

Although data can only travel forward in a native 

LSTM model, Bi-LSTM allows for both forward and 

backward data flow. In a Bi-LSTM network, in 

contrast to a traditional LSTM, the state at time t is 

dependent on both the data collected before t and the 

data collected after t.  

Thus, the use of Bi-LSTM enabled learning over the 

long-range dependency amongst the input landslide 

influencing factor’s features that achieved more 

semantically enriched feature. Each of the two LSTM 

units that make up the Bi-LSTM layer can process 

input vectors in either the forward or backward 

direction, as shown in Figure 2. Nevertheless, because 

we wanted to keep things simple, we only employed 

each LSTM for feature extraction in one direction, as 

shown in Figure 2. In this case, the forward LSTM 

takes data in from the left and processes it on the right, 

hence the corresponding hidden layer output is (12).  

 

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃗ 𝑡−1) (12) 

A backward LSTM's matching hidden layer data is 

retrieved in the following way: (13),  

in contrast to a forward LSTM, which processes 

information in the left-to-right manner (Fig. 2).  

  

ℎ⃖⃗𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ⃖⃗𝑡+1) (13) 

Finally, the extracted features from both LSTM 

types were concatenated to yield the final composite 

feature, given as (14).  

ℎ𝑡,𝐵𝑖−𝐿𝑆𝑇𝑀 = [ℎ⃗ 𝑡 , ℎ⃖⃗𝑡  ] (14) 

2. Global Average Max-Pooling Layer  

As we've already established, Bi-LSTM can learn 

over both short-term contextual features and long-term 

dependency relationships among the input features 

(like landslide influencing factors) because it keeps 

both local and global features (together with LSTM 

and Bi-LSTM outputs). In the deployed hybrid deep 

network, the features obtained from LSTM layer as 

well as Bi-LSTM layer were concatenated at the global 

average pooling (GAP) layer (Fig. 2). Thus, at the 

GAP layer, we retained high-resolution composite 

features which was passed to the flatten layer followed 

by the Softmax layer. Consider that the cumulative or 

composite feature vector be 𝐿𝑠  and the number of 

convolutional kernels be B. In this case, applying 𝐵 

convolutional kernels and 2𝑑  dimensional output 

vector in Bi-LSTM were assigned the same value. In 

this manner, the generated feature vector (from, 

LSTM) be 𝐻 ∈ 𝑅(𝐿×𝑑)×2𝑑(say, the sliced vector), and 

the output of the LSTM be 𝐻𝐿𝑆𝑇𝑀 =

[𝐶1, 𝐶2, … , 𝐶𝑛], 𝐶 ∈ 𝑅𝑙×𝐵 . Similarly, the output from 

Bi-LSTM be 𝐻𝑡_𝐵𝑖LSTM
= [ℎ1, ℎ2, … , ℎ𝐿]and  𝐻𝑡 ∈

𝑅𝑙×2𝑑. In the proposed model, the GAP layer averaged 

the input vector 𝐻 (15) to obtain feature points 𝐿𝑠 ∈

𝑅2𝑑, stating the feature representation of the complete 

input vectors.  

𝐻 = 𝐶𝑜𝑛𝑐(𝐻𝐿𝑆𝑇𝑀 + 𝐻𝐵𝑖−𝐿𝑆𝑇𝑀) (15) 

This approach enabled the avoidance of any 

probable over-fitting problem.  

𝐿𝑠 = 𝐺𝐴𝑃(𝐻) (16) 

Output Layer 

The output of the GAP layer 𝐿𝑠 (16) was projected 

as input to the output layer to perform two-class 

classification.  

𝐿𝑜𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = −
1

𝑚
∑(𝑦𝑖

𝑚

𝑖

∗ 𝑙𝑜𝑔(𝑝(𝑦𝑖))

+ (1 − 𝑦𝑖)

∗ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))) 

(17) 

In equation (17), m, the input attributes, and p(y_i), the 

genuine labels, are represented. For landslip 

prediction, the cross-entropy function is shown by 

equation (17). Bear in mind that there is a very small 

discrepancy in the original data representing landslide 

impacting elements (for example, true labels in 

landslide risk data), but you can use the logarithmic 

function in cross-entropy to increase the distance 

between the data.  

Because of this, the computation error can be reduced 

to a minimum.  

The application of cross-entropy becomes critical 

since it guarantees that each landslide influencing 

element has a different weight, which is important 

because each component affects the landslide 
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probability in its own unique way. Consequently, it 

improves learning and produces more accurate results. 

To further accelerate convergence and guarantee that 

local minima or optima would likely occur during 

learning, the proposed cascaded hybrid deep model 

can also decide the direction of the fast gradient 

descent. 

 Using cross-entropy improves the accuracy of the 

likelihood of optimisation in the long run. Put 

otherwise, the chances of a landslide being close to one 

would be maintained, but the chances of a non-

landslide staying close to zero would also be 

maintained. Accuracy and precision in classification 

can be enhanced. In light of the above, we used (17) in 

conjunction with the adaptive learning model ADAM, 

training it at a rate of 0.001, to establish a two-category 

classification system: 1-Landslide Probability YES 

and 0-Landslide Probability NO. What follows is a 

more in-depth analysis of the general findings and 

related conclusions from the simulation. 

V. RESULTS AND DISCUSSION 

In sync with the goal to design a robust multi-

parametric (environmental) sensitive landslide 

prediction system, in this paper a highly robust deep 

learning environment was designed. Though, to 

achieve superior efficiency and reliability, this work 

emphasized on both feature engineering as well as 

classification environment. Unlike classical researches 

where the authors have applied standalone feature 

(like, rainfall pattern [43]][49][50][59], slope [60]) or 

some other spatial features like slope, soil etc., this 

work amalgamated a total 17 distinct spatio-temporal 

features from the different landslide portfolio factors 

including geological, geomorphometric, soil, 

environmental and precipitation, etc. Noteworthy, the 

different influencing factors were obtained by 

processing rigorous feature significance analysis so as 

to ensure higher reliability. Functionally, the data were 

at first collected from the benchmarks like NASA 

meteorological details, followed by other secondary 

sources like Geological Survey of India (GSI), and 

other publicly availble details like Kaggle data, 

GitHub etc. Initially, a total of 107 environmental 

factors were identified. A number of key parameters 

were derived by applying different technologies such 

as GIS, GEE (Google Earth Engine), ArcGIS, SAGA 

etc. The collected data were later even processed for 

DEM analysis. Identifying a set of 25 environment 

parameters, we performed rank sum test as the 

significant predictor test that eventually retained a total 

of 16 most significant influencing factors having 

decisive impact on landslide risk prediction. In order 

to conduct further analysis, sixteen factors were taken 

into account. These factors include: slope angle, 

aspect, elevation above sea level, curvature, profile 

curvature, plan curvature, solar radiation, number of 

valleys, terrain ruggedness index, stream power index, 

topographic wetness index, length slope, topographic 

position index, land use, normalised difference 

vegetation index, soil, and rainfall.  

Noticeably, to alleviate any likelihood of over-fitting 

and global optima over non-linear features, data 

normalization using Min-Max algorithm was 

performed. An LSTM and Bi-LSTM cascaded hybrid 

deep learning model was suggested, which would use 

normalised data representing the spatio-temporal 

aspects of various environmental parameters. By 

strategically replacing LSTM's Max-pooling layer 

with B-LSTM, we were able to maintain both local and 

global characteristics, or long-term dependencies, in 

the suggested hybrid deep learning model, allowing 

for greater learning. The LSTM model's architecture 

includes a dense layer, an average pooling layer, a 

batch normalisation layer, and an activation function 

that uses ReLU. 

 Moreover, the learning rate assigned was 0.001, while 

the learning optimizer was deployed as ADAM. 

Finally, the extracted features from LSTM and Bi-

LSTM were trained over Softmax classifier layer to 

perform risk prediction. In sync with binary 

classification problem (i.e., Positive Landslide Risk 

(‘1’) and Negative Landslide Risk (‘0’)), we applied 

binary cross-entropy information for classification. 

The proposed model was implemented over Python 

Notebook platform, where the simulation was done 

with different Pythons advanced libraries including 

TensorFlow, Keras etc. An Intel i5 processor, 8 GB of 

RAM, and a 3.00 GHz CPU were utilised to execute 

the simulation on a computer system secured by 

Microsoft operating system.  

As a binary classification task, the suggested model's 

performance was evaluated by obtaining a confusion 
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matrix that included the following columns: TP, TN, 

FP, and FN. Other statistical performance metrics such 

as recall, accuracy, precision, and F-Measures were 

derived from the parameters of the confusion matrix. 

Table I provides the formulas for measuring these 

variables. 

Table I. Performance Parameters 

Parameter Mathematical Expression Definition 

Accuracy (𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃)
 

Indicates the fraction of classes 

(landslide probability class) that were 

accurately classified out of all the 

classes. 

Precision 𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 

Indicates how well the results hold up 

when measured again under the same 

conditions. 

Recall 𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

It specifies the number of pertinent 

things that need to be located. 

F-Score 2. (𝑅𝑒𝑐𝑎𝑙𝑙. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) A single score is produced by 

combining the recall and precision 

numerical values; this score is defined 

as the harmonic mean of the two. 

To examine whether the proposed model, especially 

with the LSTM and Bi-LSTM yields superior 

efficiency, we trained both models (i.e., LSTM as well 

as hybrid LSTM-Bi-LSTM together with 100 epochs) 

independently over the extracted feature vector (the 

Min-Max normalized features pertaining to the 16 

selected landslide influencing factors). The primary 

goal here was to see if the suggested hybrid deep 

learning environment might outperform more 

traditional RNNs, such as LSTM. You can see the 

outcomes of the simulation in Table II.  

Table II Relative (Intra-Model) performance 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-

Measure 

(%) 

LSTM 91.52 92.11 92.65 92.38 

Hybrid 

*LSTM-

Bi-LSTM 

96.38 95.19 95.93 95.56 

*Proposed Method 

Figure 4 shows the visual representation of the 

outcomes. Looking at the data in Table II, it's clear that 

the suggested hybrid deep model (let's call it an 

LSTM-Bi-LSTM network) outperforms the traditional 

LSTM based method with an accuracy of 96.38%. The 

suggested hybrid deep learning model's capacity to 

learn dependent variables over the long run makes this 

a viable contribution. In a similar vein, the LSTM and 

Bi-LSTM models attained 92.11%, 92.63%, 92.38%, 

and 95.56% in terms of recall, accuracy, and F-

Measure (in percentiles), respectively. 
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 It signifies that the proposed hybrid deep driven 

landslide prediction model exhibits superior 

performance than the classical recurrent neural 

network method (i.e., LSTM). The F-Measure which 

indicates reliability of the system too is found almost 

0.9666, which is higher than 0.95, and hence confirms 

very good (say, reliable) performance by the proposed 

model. 

 

Fig. 4 Relative Intra-Model performance 

In addition to the above discussed performance 

parameters, we assessed error profile of the learning 

models (i.e., LSTM and hybrid LSTM + Bi-LSTM). 

We assessed the error profile using the root-mean-

square error (RMSE) and the mean-average error 

(MAE). 

The simulation results obtained are given in Table III. 

Table III Error performance 

Model MAE RMSE 

LSTM 4.721 2.152 

Hybrid *LSTM-Bi-LSTM 0.1109 0.1860 

*Proposed Method 

The error performance results (Table III) too confirms 

that the proposed hybrid deep model-based landslide 

prediction model exhibits MAE and RMSE of 0.1105 

and 0.0060, respectively. On the contrary, the classical 

LSTM-based learning model exhibited MAE and 

RMSE of 4.721 and 2.152, respectively. Evidence of 

the suggested hybrid deep learning model's resilience 

in landslip risk prediction is presented. According to 

the results that have been already mentioned, the 

suggested LSTM and Bi-LSTM hybrid deep learning 

landslide prediction model has the potential to be very 

useful for landslide prediction.  

We compared the suggested landslip risk prediction 

model's performance against that of other, more 

established methods, particularly those that made use 

of machine learning and deep learning techniques, in 

order to characterise inter-model performance. Taking 

into account a recent study by Utomo et al. [46] that 

utilised LSTM networks for landslip prediction, the 

best accuracy achieved was 90%, which is over 6.38 

percentage points lower than the suggested model's 

96.68% accuracy.  

This result inference clearly indicates that though 

LSTM perform better over non-linear pattern; 

however, the native architecture lacks learning ability 

of long-term dependency or global features. However, 

the suggested hybrid model (i.e., cascading LSTM 

with Bi-LSTM) is able to efficiently learn over both 
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local and global data, allowing it to achieve a higher 

accuracy of 96.68%. This proves that the proposed 

model is better than the current one [46].  

Considering a recent work by Xing et al. [77] applied 

LSTM model for landslides displacement 

measurement. Though, the authors applied LSTM with 

Softmax classifier, additionally, they assessed their 

feature efficacy with SVM and extreme learning 

methods. Interestingly, with LSTM the authors 

achieved RMSE and MAE of 7.28%, and 6.02%, 

respectively, which is significantly higher than our 

proposed model (RMSE= 0.1109, MAE=0.1860). In 

their model, SVM and ELM too exhibited RMSE of 

8.94 and 7.45, and MAE of 8.42 and 7.01, respectively. 

The overall results infer that the proposed (say, hybrid 

deep model) achieves superior over the existing 

standalone LSTM or other machine learning methods 

for landslide risk prediction. To be noted, in this work 

the most significant features having decisive impact on 

the landslide risk assessment were considered and 

hence the superior performance seems relevant over 

the other state-of-arts. The authors in [38] too applied 

a robust cascade parallel neural network by using 

LSTM with conditional random field (CRF). After 

doing a thorough evaluation, they found that the 

proposed model could obtain a true positive rate of 

around 76%, which is much lower.  

Though, their area under curve performance 

approached to almost 86%; yet, it falls below our 

model which can have the same performance output 

more than 95%. It confirms that the proposed hybrid 

deep model can perform superior over other state-of-

art hybrid deep architectures like LSTM-CRF. In [43], 

Li et al. applied GEE derived rainfall information to 

perform landslide susceptibility mapping by using 

ensemble learning model. Undeniably, their area under 

curve performance of almost 97% looks similar to our 

approach; however, unlike standalone rainfall-based 

prediction our proposed model applied other spatio-

temporal parameters as well, and hence contributes 

more reliable solution. Ghorbanzadeh et al. [78] 

applied a modified residual network for landslide 

prediction, where they achieved the highest precision 

of 73.44%, recall 80.33%, F1-score 76.56%, which are 

significantly lower than our proposed model. When it 

came to mapping the likelihood of landslidesFor their 

study, Zhang et al. [79] compared a number of ML and 

deep learning methods. For landslip prediction, they 

created a deep learning model named landslip net 

(LSNet) that achieved 95% accuracy, 95.1% precision, 

and an F1-score of 0.951. We present a model that 

outperforms this one by more than 2%. The results 

displayed above prove that the proposed methodology 

can outperform other cutting-edge approaches to 

landslip risk prediction. 

VI. CONCLUSION  

A landslip prediction system powered by a hybrid-

deep network is presented in this paper.  

The suggested model aimed to enhance the computing 

environment in addition to the features. 

 As feature environment numerous influencing factors 

were obtained from the landslide inventory data. To 

ensure optimality of features, Wilcoxon Rank sum 

algorithm driven significant predictor test was applied 

over the input inventory data that eventually selected 

the optimal set of influencing factors towards landslide 

prediction. In particular, sixteen factors were 

identified by the proposed feature selection model as 

having an impact. Sunlight, altitude above sea level, 

orientation, slope angle, curvature, profile curvature, 

plan curvature, terrain ruggedness index, stream power 

index, topographic wetness index, length slope, 

topographic position index, land use, normalised 

difference vegetation index, soil, and rainfall are all 

factors to consider. 

 The input to the hybrid deep network, which includes 

LSTM and Bi-LSTM, was the features that were 

extracted. Instead of using CNNs or LSTMs, which are 

classical feature extraction methods that can only use 

word-level local features, this study used Bi-LSTMs, 

which were trained over LSTM extracted features to 

retain long-term dependency, to extract features. By 

training on both local and global variables (such as the 

interdependence of the influencing elements across 

time), the LSTM-Bi-LSTM model was able to achieve 

superior learning and classification performance. The 

suggested model achieves landslip prediction accuracy 

of 96.38%, precision of 95.19%, recall of 95.33%, and 

F-Measure of 95.56%, as shown in the simulation over 

benchmarks. The suggested model is robust, as shown 

by the mean average error of 0.1109 and the root mean 

square error value of 0.1860. Of the methods for 
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mapping and predicting landslip susceptibility that 

have been established thus far, the simulation results 

were determined to be the most effective. The 

suggested model is reliable for landslip prediction in 

real-time, according to the error profiling results (i.e., 

MAE 0.0862 and RMSE 0.1358). 
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