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Abstract

Research on the use of graph neural networks (GNN5s) in supply chain management is still scarce, despite the fact
that they have lately acquired popularity in the fields of language, image processing, bioinformatics, and
transportation. Because supply chains are graph-like by nature, they are perfect for GNN approaches, which may
optimise and resolve challenging issues. This research uses the Supply Graph dataset, a standard for graph-based
supply chain analysis, to examine how GNNs might be used to demand forecasting in supply chain networks.
Utilising cutting-edge GNN techniques, we improve forecasting model accuracy, reveal hidden relationships, and
handle the temporal complexity that comes with supply chain processes. Because of their intrinsic graph-like
structure, supply chain networks are excellent candidates for the use of GNN techniques. Therefore, it possible to
anticipate, optimise, and resolve even the most challenging supply chain issues. Since graphs allow researchers to
examine linkages and improve networks in addition to identifying patterns, their use makes it possible to conduct
thorough data analysis. Graphs' fundamental ideas, applications, and analytical techniques for complex system
analysis are all examined in this paper. The research offers key analytical methodologies, including graph
clustering methods, shortest route algorithms, and network centrality measurements. These findings demonstrate
the usefulness and need of graph-based models for solving real-world problems via their in-structure analysis.

Keywords: - Graph Neural Networks (GNNs), Supply Graph Dataset, GNN Methodologies, Network Centrality,
Optimization Abilities, Optimizing, Path Algorithms, Graph Clustering, Forecasting Models.

I. INTRODUCTION demand forecasting [3, 4]. However, they frequently
fall short of fully utilising the relational structures
found in supply chain networks. GNNs may be able

to overcome these constraints by revealing hidden

In order to organise interactions between goods,
production sites, storage locations, and distribution

centres, supply chain networks are very complex ) . ) e
relationships and making predictions that are more

accurate, according to recent developments in graph
representation learning.

systems [1, 2]. Because supply and demand
dynamics control these connections, graph-based
representations are a natural fit for the networks. For

the analysis of such relational data structures, Graph
Neural Networks (GNNs) have become very
effective tools [2, 3], providing insights that are
difficult to get using conventional methods. Their
ability to describe intricate relationships and
dynamic interactions is shown by their effectiveness
in a variety of fields, including as social network
analysis, transportation systems, weather prediction,
and knowledge graph reasoning. The lack of
publicly accessible datasets that depict the complex
nature of supply chain operations has mainly
hampered the use of GNNs in supply chain
management, despite their great potential.

Long Short-Term Memory networks (LSTMs) and
Multilayer Perceptrons (MLPs) are two examples of
traditional machine learning models that have been
used for tasks like production scheduling and

A key element of supply chain management is
production planning, which helps businesses
optimise their inventory levels, production
schedules, and resource allocation by forecasting
future demand for goods or services [5, 6]. Since a
company's ability to foresee demand and prepare
appropriately is crucial to its income, many deep
learning and machine learning methods have been
investigated to address this problem.

Machine learning has been the subject of much study
in the field of supply chain management's
production planning. Several research use these
approaches to enhance demand forecasting and
streamline manufacturing procedures. Artificial
Neural Networks (ANNs), Convolutional Neural
Networks (CNNs), and Long Short-Term Memory
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networks (LSTMs) are a few examples of deep
learning approaches.

By making it possible to simulate intricate supply
chain systems, optimise logistics, and improve
decision-making via data-driven insights, supply
chain machine learning using graph neural networks
has great potential [5, 6]. New developments in this
area use GNNs to boost supply chain resilience and
demand forecasting, opening the door to more
effective and flexible supply chain operations.
Additionally, [8, 9] the use of graph representation
learning techniques has improved the performance
of link prediction tasks influenced by earlier GNN
link prediction studies by uncovering hidden
dependence ties in supply chain networks. This
study demonstrates how machine learning may
improve production planning and demand
forecasting, with GNNs showing promise in
resolving supply chain issues [9].

A significant milestone in the use of GNNs for
supply chain analytics was reached with the release
of the Supply Graph dataset. This dataset is based on
actual operations at a top Fast-Moving Consumer
Goods (FMCG) company in Bangladesh. It
incorporates temporal features like production
volumes, sales orders, delivery metrics, and factory
issues, and models supply chain elements as nodes
and their interdependencies as edges. The Supply
Graph dataset makes it easier to investigate tasks
like demand forecasting, anomaly detection, and
resource optimisation by combining relational and
temporal data [9, 10]. GNNs have the potential to
revolutionise supply chain management by taking
advantage of the natural graph structure of supply
chain networks [11]. GNNs can reveal patterns that
conventional machine learning techniques miss by
simulating both local and global dependencies.

In this study, we aim to address the present
challenges in applying GNNs to supply chain
management by providing a thorough analysis of the
Supply Graph dataset, with a particular focus on
these two objectives: demand forecasting, where
precise predictions are crucial for inventory

management, production scheduling, and the
effectiveness of operations:

1) Identify the essential downstream activities for
supply chain management, such demand
forecasting.

2) To assess the efficacy of GNN-based models,
establish baseline performance indicators [12].

A relatively new technology, graph neural networks
(GNNs) have shown remarkable performance in
processing graph-structured data in a variety of
fields [11,12]. GNNs have been used in social
network analysis to enhance recommendation
systems and simulate user interactions. GNNs have
sped up the prediction of molecular characteristics
and drug-protein interactions in the drug discovery
domain. Furthermore, via multimodal data analysis,
GNNs have improved brain-computer interface
technology in biological signal processing [14].
These achievements highlight their capacity to
reveal intricate relationships and ever-changing
dynamics inside supply chain networks. Because
there aren't enough publicly accessible, real-world
datasets, GNNs haven't been used as much in supply
chain analytics as they might be [ 14]. Innovation and
benchmarking in this area have been hampered by
this disparity. GNN applications have been studied
recently for tasks including hidden dependency
analysis and link prediction, which are essential for
reducing risks and enhancing supply chain
management decision-making [15].

This issue is addressed with the release of the
SupplyGraph dataset, which offers a thorough
benchmark designed specifically for GNN
applications in supply chain analytics. The
intricacies of supply chain activities are captured in
this dataset, which also includes temporal aspects
like manufacturing quantities, sales orders, and
delivery indicators. The SupplyGraph dataset
enables a variety of applications, including resource
optimisation, anomaly detection, and demand
forecasting, by combining graph representation
learning with temporal data [18] [14].
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Supply Chain as Graph of Company, Products,
Distributors and Customers

Different types of information flow between
different entities

Fig. 1 Supply Chain as a Network of Linked Businesses, Goods, Distributors, and Clients. [19]

The capacity of graph neural networks (GNNs) to
simulate intricate connections in data has led to their
widespread application in a variety of industries.
GNNs are used in social networks to analyse user
relationships for community discovery, information
analysis, and suggestions [17]. In biology, they
simulate molecular interactions to aid in drug
discovery. Research uses GNNs for knowledge
graph reasoning and anomaly detection, HR uses
them for job matching, and finance uses them for
fraud detection [11].

They are adaptable for tasks requiring related
entities because of their strength in efficiently
capturing relationships in non-Euclidean data. By
connecting to the supply chain, GNNs may make it
possible to model intricate dependencies and
linkages, which will help with activities like
production planning, risk assessment, sales
forecasting, and identifying hidden hazards [10]. By
extracting pertinent information from graph data and
inferring various hidden connection hazards, GNN
approaches may be used to improve decision-
making processes, optimise supply chain operations,
and improve risk management [10].

Demand forecasting, inventory control, route
optimisation, supplier risk assessment, and quality
control are all aided by machine learning models,
which increase operational effectiveness and save
costs. Organisations may achieve intelligent
management, automation, and visualisation of all
supply chain linkages by integrating Al algorithms
into their supply chain management system [10].
This will eventually improve responsiveness to
market needs and save operational costs. Utilising
ML has been the focus of a lot of study [11]. Using
these approaches, a number of research seek to
enhance demand forecasting and streamline
manufacturing procedures.

This study presents the Graph-based Supply
Prediction (GSP) probabilistic model, which is
designed for scenarios where scheduled shipment
and anticipated demand inputs are available across
the defined time horizon, in order to handle the
shipping event, supply, and inventory prediction
challenges [10]. Using sequential graph structured
snapshots of historical supply chain data, demand
forecasts, and shipping plan inputs, we use attention-
based graph neural networks (GNN) to provide
network-wide  consistent and  simultaneous
predictions for arriving and exiting goods and
inventories [12].

In addition, we propose a model-training loss
function that combines cumulative supply prediction
errors with inventory prediction errors. To further
explain, the loss function's incorporation of
cumulative supply prediction mistakes, as shown in
Figure 3, addresses the prediction errors resulting
from the unpredictability of supply variations in the
number and timing of shipping events throughout
the time horizon [10]. The cumulative outgoing
supply quantity from the source node across the time
horizon has a proportionate influence on the
inventory level at the destination node in an edge
with a constant lead time, as should be noted [15].

Researchers in computer science, biology,
transportation, and social networking fields all
employ graph theory's methodical methodology as a
vital tool for analysing complicated systems [16].
Through systems optimisation, social network
community discovery, and biological interaction
modelling, scientists may tackle real-world network
issues using the mathematical framework of graph
theory [19]. In the 18th century, Swiss
mathematician Leonhard Euler presented the
Konigsberg Bridge Problem as the foundation for
graph theory.

186


https://economic-sciences.com/

Economic Sciences

https://economic-sciences.com »

\\i‘.»

ES (2024) 20(01 April), 184-192| ISSN:1505-4683 scomets

Because users can now do large-scale graph
operations because to recent advancements in
computing power, graph models are becoming
essential parts of artificial intelligence applications
as well as cybersecurity and logistics systems [19].

1.1 Applications of Graph Theory in Complex
Systems

When examining and optimising the performance of
complex system architectures, graph theory is often
used [19]. Among the noteworthy uses are:

*  Graph-based approaches make it possible to
assess interpersonal relationships in order to
find interlinking groupings and core subgroups
[20]. Graph-based recipes are used by social
media networks to suggest friends and direct
users' content show.

* By integrating graph algorithms into route
planning processes, transportation networks
may be optimised to improve daily operations
and supply chain efficiency [29].

*  Graph-based models are used in communication
networks and cybersecurity to detect security
risks, optimise network security, and investigate
the information flow of distributed systems
[30].

II. METHODOLOGY

2.1 Overview of Graph-Based System Modeling

The suggested approach models, analyses, and
optimises complicated systems by using graph
theory. A graph G = (V,E) is defined, where V
represents the set of nodes (or vertices), and E
denotes the set of edges connecting the nodes [19].
Each edge may be assigned a weight w(i,j),
representing the relationship strength or cost
between nodes i and j. For several parts of system
modelling, including as shortest route computation,
centrality measurements, [11], clustering, and
predictive modelling using Graph Neural Networks
(GNNs), the method integrates a number of graph
algorithms. The following actions are part of the
basic framework:

1. Graph Representation: Converting the
intricate system into a graph.

2. Graph Preprocessing: Managing missing
information, eliminating superfluous edges, and
standardising weights [19].

3. Algorithm Selection: Using the right graph
algorithms according to the situation.

4. Optimization and Analysis: Assessing the
precision and effectiveness of graph-based
solutions [10]. Transportation networks,
biological systems, and social networks are just
a few of the areas in which the suggested
technique may be modified.

2.2 Graph Representation and Formulation

Depending on its structure, a system may be
represented as either a directed or undirected graph
[18]. If the connections between nodes are
symmetric, [20], the graph is undirected 4;; = A;;);
otherwise, it is directed. The representation of the
adjacency matrix is provided by:

Aij =
{1, if thereis an edge from node i to node j
0. otherwise

In the case of weighted graphs [22], edge weights
rather than binary values are included in the
adjacency matrix:

W = (@D, i ) EE

0, otherwise
To model real-world systems with dynamic
interactions, a temporal graph G, = (V,E;) is
introduced, where E; changes over time [22]. The
definition of a node's state transition probability is:

where N (v) represents the neighbouring nodes of v,
and f(u, t) is the state function of node u at time t.

2.3 Graph-Based Optimization Algorithms

Numerous issues in complex systems are resolved
by the use of graph-based optimisation approaches
[29]. Among the important algorithms used in this
research are:

* Shortest Path Computation: The shortest
route between nodes is found using the Dijkstra
method [10]. The path cost d(i, j) is updated as:

d(j) = min (d(j), d(D) + w(i, )

Where d(j) is the smallest known distance between
node I and the source node as of right now.

* Graph Clustering: The Laplacian matrix is
used in spectral clustering to divide nodes into
communities:

L=D-A
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where the adjacency matrix is A and the degree
matrix is D [19].

*  Centrality Computation: Eigenvector
centrality is used to quantify the significance of
nodes:

C(U) =211 ZueN(v) Awv C(u)
where A is a scaling factor.

*  Graph Neural Networks (GNNs) for
Prediction: GNNs are used to forecast system

=

behaviours or node labels [20]. The definition
of the node feature update is:

k k
hv( ) = U(W(k) ZWEN(V) h'l(t ) + b(k))

Where hg"') is node v's feature vector at layer k.
W®and b are parameters that may be learnt,
whereas ¢ is an activation function [22].

The suggested methodology's step-by-step process,
from input graph creation to analysis and
optimisation, is shown in the flowchart below [3].

Start

+*
Input Graph Data ‘

!

Preprocessing ‘

!

Graph Construction

]

Algorithm Selection

,L YES

Computation and
Processing

!

Optimization and
Prediction

!

Results and Insights

End

Fig. 1 Framework for Graph-Based Modelling and Analysis. [10]

2.4 Performance Evaluation Metrics

The following criteria are taken into consideration in
order to assess the effectiveness of the suggested
graph-based modelling technique, [11]:

*  Graph Density: evaluates the graph's degree of
connectivity:

2|
T vIvI-1)

*  Modularity: assesses the community detection
quality in a graph:

1

kikj
T 20E|

%y (4y —52) 6(G, ¢))

2|E|

Q

Where,

k;is the degree of node i, and 6(C;, C; serves as a

community membership indicator [19].

»  Computational Complexity: Analysis is done
on the temporal complexity of important
algorithms [12], such as O(V)? for Dijkstra's
algorithm and O(N3) for spectral clustering.
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2.5 Implementation and Experimental Setup

The method is implemented using Python with
Network X for graph processing, Scikit-learn for
machine learning, and Tensor flow for GNN-based
prediction models [23]. Both simulated and real-
world network datasets are used to verify the
proposed approach.

III. Re.sults and discussion

The effectiveness of the proposed graph-based
modelling was evaluated via applications on both
simulated and real-world datasets to determine its
applicability  for  different scenarios. The

experiments included centrality evaluation,

community finding techniques, shortest paths, and
prediction models built using Graph Neural
Networks (GNNs) [19]. When complex systems are
implemented, the experimental results verify that the
recommended strategy yields the desired results
[18].

Performance evaluation was used to evaluate the
computational effectiveness levels of various graph
algorithms [23]. Table 1 displays the execution time
of several shortest route approaches for datasets with
different graph sizes. Dijkstra's technique is most
effective for networks of moderate size, but A*'s
heuristic-focused approach is advantageous for large
nodes [24].

Table 1 Comparison of the Execution Times of Shortest Path Algorithms. [11]

Graph Size (nodes) Dijkstra’s  Algorithm | A* Algorithm (ms) Bellman- Ford algorithm
(ms) (Ms)
100 14.9 11.2 26.9
500 49.9 39.8 141.5
1000 136.9 96.8 325.6
5000 715.9 521.9 1896.6
Experimental  findings  indicate  that  the connectivity assessments using spectral clustering.

identification of communities inside complex
networks is enhanced by the use of graph-based
clustering algorithms [19]. In the social network
evaluation, communities were derived from node

An example of identified clusters is shown in Figure
2 [20]. Various communities are represented by
various colours in the schematic image, and heavily
connected nodes create clusters among them [22].

Community Detection- Number of CLusters vs. Modularity Score

0 5 10 15

= Modularity score

25 30 35 40

m Average cluster size

Fig. 3 Cluster Count for Community Detection vs. Modularity Score. [18]

The evaluation method used centrality analysis to
identify the network nodes that had the most
influence. Eigenvector centrality values were
computed for the financial transaction network in
order to determine which nodes had the most

influence on money transfer operations [18]. Table 2
evaluates degree centrality and betweenness
centrality in parallel to eigenvector centrality [23].
Eigenvector centrality creates a more intricate
ranking system of important nodes than standard
degree centrality measurements alone.
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Table 2 An Evaluation of Centrality Measures in Comparison. [18]

Node ID Degree Centrality Betweenness Eigenvector Centrality
Centrality

1 0.69 0.89 0.79

2 0.9 0.28 0.89

3 0.29 0.69 0.64

4 0.11 0.48 0.59

several learning models on knowledge graphs. The
transfer learning findings demonstrate the advantage
of GNN-based techniques as they are more adept at
identifying relational connections.

The proposed framework was evaluated using a
GNN-based prediction model that carried out node
classification on the provided data [19]. Figure 4
displays the accuracy evaluation performance of

Start

Analyze Models

Continue

#

Select
Model
l A J l
Traditional ML ' ”’(‘Ra' gggzma L GNN-Based
(SVM) Forest Model
782 0.75 825 0.80 89.7 0.88

Fig. 4 Comparison of GNN and Conventional ML Models in Terms of Accuracy. [18]

during benchmarks utilising large-scale datasets
[16]. According to the performance trend, A* has the
quickest time to completion, although BFS
(Breadth-First Search) outperforms DFS (Depth-
First Search) when growing graphs [23].

Scalability was emphasised in this study as it was a
crucial research goal. Figure 4 shows time
increments per increasing node count together with
the execution times of several traversal techniques
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Execution time vs. Number of Nodes for Graph Traversal

200

150

100

" P

1

e BF'S Execution Time (ms)

DFS Execution Time (ms)

Fig. 5 Execution Time for Graph Traversal vs. Node Count. [10]

Graph-based modelling is shown to provide a practical approach to evaluating complex systems [19]. The study
emphasises how important it is to choose appropriate network algorithms that fit a given issue type while also

taking processing resources and scalability into account.

IV. CONCLUSION

This technology is used in many sectors to improve
resource management, network applications, and
decision-making processes. Scalability problems in

applications of graph-based algorithms are
addressed by current efforts to enhance
computational methods. Future study should

investigate new Al techniques to improve system
prediction capacities and operational efficiency,
since the present work leverages Al for graph
analytics.
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