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Abstract 

Research on the use of graph neural networks (GNNs) in supply chain management is still scarce, despite the fact 

that they have lately acquired popularity in the fields of language, image processing, bioinformatics, and 

transportation. Because supply chains are graph-like by nature, they are perfect for GNN approaches, which may 

optimise and resolve challenging issues. This research uses the Supply Graph dataset, a standard for graph-based 

supply chain analysis, to examine how GNNs might be used to demand forecasting in supply chain networks. 

Utilising cutting-edge GNN techniques, we improve forecasting model accuracy, reveal hidden relationships, and 

handle the temporal complexity that comes with supply chain processes. Because of their intrinsic graph-like 

structure, supply chain networks are excellent candidates for the use of GNN techniques. Therefore, it possible to 

anticipate, optimise, and resolve even the most challenging supply chain issues. Since graphs allow researchers to 

examine linkages and improve networks in addition to identifying patterns, their use makes it possible to conduct 

thorough data analysis. Graphs' fundamental ideas, applications, and analytical techniques for complex system 

analysis are all examined in this paper. The research offers key analytical methodologies, including graph 

clustering methods, shortest route algorithms, and network centrality measurements.  These findings demonstrate 

the usefulness and need of graph-based models for solving real-world problems via their in-structure analysis. 

Keywords: - Graph Neural Networks (GNNs), Supply Graph Dataset, GNN Methodologies, Network Centrality, 

Optimization Abilities, Optimizing, Path Algorithms, Graph Clustering, Forecasting Models. 

I. INTRODUCTION 

In order to organise interactions between goods, 

production sites, storage locations, and distribution 

centres, supply chain networks are very complex 

systems [1, 2]. Because supply and demand 

dynamics control these connections, graph-based 

representations are a natural fit for the networks. For 

the analysis of such relational data structures, Graph 

Neural Networks (GNNs) have become very 

effective tools [2, 3], providing insights that are 

difficult to get using conventional methods. Their 

ability to describe intricate relationships and 

dynamic interactions is shown by their effectiveness 

in a variety of fields, including as social network 

analysis, transportation systems, weather prediction, 

and knowledge graph reasoning. The lack of 

publicly accessible datasets that depict the complex 

nature of supply chain operations has mainly 

hampered the use of GNNs in supply chain 

management, despite their great potential.  

Long Short-Term Memory networks (LSTMs) and 

Multilayer Perceptrons (MLPs) are two examples of 

traditional machine learning models that have been 

used for tasks like production scheduling and 

demand forecasting [3, 4]. However, they frequently 

fall short of fully utilising the relational structures 

found in supply chain networks. GNNs may be able 

to overcome these constraints by revealing hidden 

relationships and making predictions that are more 

accurate, according to recent developments in graph 

representation learning. 

A key element of supply chain management is 

production planning, which helps businesses 

optimise their inventory levels, production 

schedules, and resource allocation by forecasting 

future demand for goods or services [5, 6]. Since a 

company's ability to foresee demand and prepare 

appropriately is crucial to its income, many deep 

learning and machine learning methods have been 

investigated to address this problem. 

Machine learning has been the subject of much study 

in the field of supply chain management's 

production planning. Several research use these 

approaches to enhance demand forecasting and 

streamline manufacturing procedures. Artificial 

Neural Networks (ANNs), Convolutional Neural 

Networks (CNNs), and Long Short-Term Memory 
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networks (LSTMs) are a few examples of deep 

learning approaches. 

By making it possible to simulate intricate supply 

chain systems, optimise logistics, and improve 

decision-making via data-driven insights, supply 

chain machine learning using graph neural networks 

has great potential [5, 6]. New developments in this 

area use GNNs to boost supply chain resilience and 

demand forecasting, opening the door to more 

effective and flexible supply chain operations. 

Additionally, [8, 9] the use of graph representation 

learning techniques has improved the performance 

of link prediction tasks influenced by earlier GNN 

link prediction studies by uncovering hidden 

dependence ties in supply chain networks. This 

study demonstrates how machine learning may 

improve production planning and demand 

forecasting, with GNNs showing promise in 

resolving supply chain issues [9]. 

A significant milestone in the use of GNNs for 

supply chain analytics was reached with the release 

of the Supply Graph dataset. This dataset is based on 

actual operations at a top Fast-Moving Consumer 

Goods (FMCG) company in Bangladesh. It 

incorporates temporal features like production 

volumes, sales orders, delivery metrics, and factory 

issues, and models supply chain elements as nodes 

and their interdependencies as edges.  The Supply 

Graph dataset makes it easier to investigate tasks 

like demand forecasting, anomaly detection, and 

resource optimisation by combining relational and 

temporal data [9, 10]. GNNs have the potential to 

revolutionise supply chain management by taking 

advantage of the natural graph structure of supply 

chain networks [11]. GNNs can reveal patterns that 

conventional machine learning techniques miss by 

simulating both local and global dependencies.  

In this study, we aim to address the present 

challenges in applying GNNs to supply chain 

management by providing a thorough analysis of the 

Supply Graph dataset, with a particular focus on 

these two objectives: demand forecasting, where 

precise predictions are crucial for inventory 

management, production scheduling, and the 

effectiveness of operations:  

1) Identify the essential downstream activities for 

supply chain management, such demand 

forecasting.  

2) To assess the efficacy of GNN-based models, 

establish baseline performance indicators [12]. 

A relatively new technology, graph neural networks 

(GNNs) have shown remarkable performance in 

processing graph-structured data in a variety of 

fields [11,12]. GNNs have been used in social 

network analysis to enhance recommendation 

systems and simulate user interactions.  GNNs have 

sped up the prediction of molecular characteristics 

and drug-protein interactions in the drug discovery 

domain. Furthermore, via multimodal data analysis, 

GNNs have improved brain-computer interface 

technology in biological signal processing [14]. 

These achievements highlight their capacity to 

reveal intricate relationships and ever-changing 

dynamics inside supply chain networks.  Because 

there aren't enough publicly accessible, real-world 

datasets, GNNs haven't been used as much in supply 

chain analytics as they might be [14]. Innovation and 

benchmarking in this area have been hampered by 

this disparity. GNN applications have been studied 

recently for tasks including hidden dependency 

analysis and link prediction, which are essential for 

reducing risks and enhancing supply chain 

management decision-making [15].  

This issue is addressed with the release of the 

SupplyGraph dataset, which offers a thorough 

benchmark designed specifically for GNN 

applications in supply chain analytics. The 

intricacies of supply chain activities are captured in 

this dataset, which also includes temporal aspects 

like manufacturing quantities, sales orders, and 

delivery indicators. The SupplyGraph dataset 

enables a variety of applications, including resource 

optimisation, anomaly detection, and demand 

forecasting, by combining graph representation 

learning with temporal data [18] [14]. 
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Fig. 1 Supply Chain as a Network of Linked Businesses, Goods, Distributors, and Clients. [19] 

The capacity of graph neural networks (GNNs) to 

simulate intricate connections in data has led to their 

widespread application in a variety of industries. 

GNNs are used in social networks to analyse user 

relationships for community discovery, information 

analysis, and suggestions [17]. In biology, they 

simulate molecular interactions to aid in drug 

discovery. Research uses GNNs for knowledge 

graph reasoning and anomaly detection, HR uses 

them for job matching, and finance uses them for 

fraud detection [11].  

They are adaptable for tasks requiring related 

entities because of their strength in efficiently 

capturing relationships in non-Euclidean data. By 

connecting to the supply chain, GNNs may make it 

possible to model intricate dependencies and 

linkages, which will help with activities like 

production planning, risk assessment, sales 

forecasting, and identifying hidden hazards [10]. By 

extracting pertinent information from graph data and 

inferring various hidden connection hazards, GNN 

approaches may be used to improve decision-

making processes, optimise supply chain operations, 

and improve risk management [10]. 

Demand forecasting, inventory control, route 

optimisation, supplier risk assessment, and quality 

control are all aided by machine learning models, 

which increase operational effectiveness and save 

costs. Organisations may achieve intelligent 

management, automation, and visualisation of all 

supply chain linkages by integrating AI algorithms 

into their supply chain management system [10]. 

This will eventually improve responsiveness to 

market needs and save operational costs. Utilising 

ML has been the focus of a lot of study [11]. Using 

these approaches, a number of research seek to 

enhance demand forecasting and streamline 

manufacturing procedures. 

This study presents the Graph-based Supply 

Prediction (GSP) probabilistic model, which is 

designed for scenarios where scheduled shipment 

and anticipated demand inputs are available across 

the defined time horizon, in order to handle the 

shipping event, supply, and inventory prediction 

challenges [10]. Using sequential graph structured 

snapshots of historical supply chain data, demand 

forecasts, and shipping plan inputs, we use attention-

based graph neural networks (GNN) to provide 

network-wide consistent and simultaneous 

predictions for arriving and exiting goods and 

inventories [12]. 

In addition, we propose a model-training loss 

function that combines cumulative supply prediction 

errors with inventory prediction errors. To further 

explain, the loss function's incorporation of 

cumulative supply prediction mistakes, as shown in 

Figure 3, addresses the prediction errors resulting 

from the unpredictability of supply variations in the 

number and timing of shipping events throughout 

the time horizon [10]. The cumulative outgoing 

supply quantity from the source node across the time 

horizon has a proportionate influence on the 

inventory level at the destination node in an edge 

with a constant lead time, as should be noted [15]. 

Researchers in computer science, biology, 

transportation, and social networking fields all 

employ graph theory's methodical methodology as a 

vital tool for analysing complicated systems [16]. 

Through systems optimisation, social network 

community discovery, and biological interaction 

modelling, scientists may tackle real-world network 

issues using the mathematical framework of graph 

theory [19]. In the 18th century, Swiss 

mathematician Leonhard Euler presented the 

Königsberg Bridge Problem as the foundation for 

graph theory.  
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Because users can now do large-scale graph 

operations because to recent advancements in 

computing power, graph models are becoming 

essential parts of artificial intelligence applications 

as well as cybersecurity and logistics systems [19]. 

1.1 Applications of Graph Theory in Complex 

Systems  

When examining and optimising the performance of 

complex system architectures, graph theory is often 

used [19]. Among the noteworthy uses are:  

• Graph-based approaches make it possible to 

assess interpersonal relationships in order to 

find interlinking groupings and core subgroups 

[20]. Graph-based recipes are used by social 

media networks to suggest friends and direct 

users' content show. 

• By integrating graph algorithms into route 

planning processes, transportation networks 

may be optimised to improve daily operations 

and supply chain efficiency [29].  

• Graph-based models are used in communication 

networks and cybersecurity to detect security 

risks, optimise network security, and investigate 

the information flow of distributed systems 

[30]. 

II. METHODOLOGY 

2.1 Overview of Graph-Based System Modeling 

The suggested approach models, analyses, and 

optimises complicated systems by using graph 

theory. A graph 𝐺 = (𝑉, 𝐸) is defined, where V 

represents the set of nodes (or vertices), and E 

denotes the set of edges connecting the nodes [19]. 

Each edge may be assigned a weight 𝑤(𝑖, 𝑗), 

representing the relationship strength or cost 

between nodes i and j. For several parts of system 

modelling, including as shortest route computation, 

centrality measurements, [11], clustering, and 

predictive modelling using Graph Neural Networks 

(GNNs), the method integrates a number of graph 

algorithms. The following actions are part of the 

basic framework:  

1. Graph Representation: Converting the 

intricate system into a graph.  

2. Graph Preprocessing: Managing missing 

information, eliminating superfluous edges, and 

standardising weights  [19].  

3. Algorithm Selection: Using the right graph 

algorithms according to the situation.  

4. Optimization and Analysis: Assessing the 

precision and effectiveness of graph-based 

solutions [10]. Transportation networks, 

biological systems, and social networks are just 

a few of the areas in which the suggested 

technique may be modified. 

2.2 Graph Representation and Formulation 

Depending on its structure, a system may be 

represented as either a directed or undirected graph 

[18]. If the connections between nodes are 

symmetric, [20], the graph is undirected 𝐴𝑖𝑗 = 𝐴𝑗𝑖); 

otherwise, it is directed. The representation of the 

adjacency matrix is provided by:  

𝐴𝑖𝑗 =

{
1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑛𝑜𝑑𝑒 𝑖 𝑡𝑜 𝑛𝑜𝑑𝑒 𝑗
0. 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

In the case of weighted graphs [22], edge weights 

rather than binary values are included in the 

adjacency matrix: 

𝑊𝑖𝑗 = {
𝑤(𝑖, 𝑗), 𝑖𝑓 (𝑖, 𝑗) ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

To model real-world systems with dynamic 

interactions, a temporal graph 𝐺𝑡 = (𝑉, 𝐸𝑡) is 

introduced, where 𝐸𝑡 changes over time [22]. The 

definition of a node's state transition probability is: 

where 𝑁(𝑣) represents the neighbouring nodes of v, 

and 𝑓(𝑢, 𝑡) is the state function of node u at time t. 

2.3 Graph-Based Optimization Algorithms  

Numerous issues in complex systems are resolved 

by the use of graph-based optimisation approaches 

[29]. Among the important algorithms used in this 

research are: 

• Shortest Path Computation: The shortest 

route between nodes is found using the Dijkstra 

method [10]. The path cost 𝑑(𝑖, 𝑗) is updated as: 

𝑑(𝑗) = min (𝑑(𝑗), 𝑑(𝑖) + 𝑤(𝑖, 𝑗))  

Where 𝑑(𝑗) is the smallest known distance between 

node I and the source node as of right now. 

• Graph Clustering: The Laplacian matrix is 

used in spectral clustering to divide nodes into 

communities: 
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where the adjacency matrix is A and the degree 

matrix is D [19].  

• Centrality Computation: Eigenvector 

centrality is used to quantify the significance of 

nodes: 

𝐶(𝑣) = 𝜆−1 ∑ 𝐴𝑤𝑣𝑢𝜖𝑁(𝑣) 𝐶(𝑢)  

where λ is a scaling factor.  

• Graph Neural Networks (GNNs) for 

Prediction: GNNs are used to forecast system 

behaviours or node labels [20].  The definition 

of the node feature update is: 

ℎ𝑣
(𝑘+1) = 𝜎(𝑊(𝑘) ∑ ℎ𝑢

(𝑘)
+ 𝑏(𝑘)

𝑤𝜖𝑁(𝑣) )  

Where ℎ𝑢
(𝑘)

 is node v's feature vector at layer k. 

𝑊(𝑘)𝑎𝑛𝑑 𝑏(𝑘) are parameters that may be learnt, 

whereas σ is an activation function [22].  

The suggested methodology's step-by-step process, 

from input graph creation to analysis and 

optimisation, is shown in the flowchart below [3]. 

 

Fig. 1 Framework for Graph-Based Modelling and Analysis. [10] 

2.4 Performance Evaluation Metrics  

The following criteria are taken into consideration in 

order to assess the effectiveness of the suggested 

graph-based modelling technique, [11]: 

• Graph Density: evaluates the graph's degree of 

connectivity: 

𝐷 =
2|𝐸|

|𝑉|(𝑉|−1)
  

• Modularity: assesses the community detection 

quality in a graph:  

𝑄 =
1

2|𝐸|
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2|𝐸|
) 𝛿(𝐶𝑗 , 𝐶𝑗)𝑖𝑗   

Where,  

𝑘𝑖 is the degree of node i, and 𝛿(𝐶𝑖 , 𝐶𝑗 serves as a 

community membership indicator [19].  

• Computational Complexity: Analysis is done 

on the temporal complexity of important 

algorithms [12], such as 𝑂(𝑉)2 for Dijkstra's 

algorithm and 𝑂(𝑁3) for spectral clustering. 
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2.5 Implementation and Experimental Setup  

The method is implemented using Python with 

Network X for graph processing, Scikit-learn for 

machine learning, and Tensor flow for GNN-based 

prediction models [23]. Both simulated and real-

world network datasets are used to verify the 

proposed approach. 

III. Re.sults and discussion  

The effectiveness of the proposed graph-based 

modelling was evaluated via applications on both 

simulated and real-world datasets to determine its 

applicability for different scenarios. The 

experiments included centrality evaluation, 

community finding techniques, shortest paths, and 

prediction models built using Graph Neural 

Networks (GNNs) [19]. When complex systems are 

implemented, the experimental results verify that the 

recommended strategy yields the desired results 

[18].  

Performance evaluation was used to evaluate the 

computational effectiveness levels of various graph 

algorithms [23]. Table 1 displays the execution time 

of several shortest route approaches for datasets with 

different graph sizes. Dijkstra's technique is most 

effective for networks of moderate size, but A*'s 

heuristic-focused approach is advantageous for large 

nodes [24]. 

Table 1 Comparison of the Execution Times of Shortest Path Algorithms. [11] 

Graph Size (nodes) Dijkstra’s Algorithm 

(ms) 

A* Algorithm (ms) Bellman- Ford algorithm 

(Ms) 

100 14.9 11.2 26.9 

500 49.9 39.8 141.5 

1000 136.9 96.8 325.6 

5000 715.9 521.9 1896.6 

Experimental findings indicate that the 

identification of communities inside complex 

networks is enhanced by the use of graph-based 

clustering algorithms [19]. In the social network 

evaluation, communities were derived from node 

connectivity assessments using spectral clustering. 

An example of identified clusters is shown in Figure 

2 [20]. Various communities are represented by 

various colours in the schematic image, and heavily 

connected nodes create clusters among them [22]. 

 

Fig. 3 Cluster Count for Community Detection vs. Modularity Score. [18] 

The evaluation method used centrality analysis to 

identify the network nodes that had the most 

influence. Eigenvector centrality values were 

computed for the financial transaction network in 

order to determine which nodes had the most 

influence on money transfer operations [18]. Table 2 

evaluates degree centrality and betweenness 

centrality in parallel to eigenvector centrality [23]. 

Eigenvector centrality creates a more intricate 

ranking system of important nodes than standard 

degree centrality measurements alone. 

0 5 10 15 20 25 30 35 40

1

2

3

Community Detection- Number of CLusters vs. Modularity Score

Modularity score Average cluster size
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Table 2 An Evaluation of Centrality Measures in Comparison. [18] 

Node ID Degree Centrality  Betweenness 

Centrality  

Eigenvector Centrality  

1 0.69 0.89 0.79 

2 0.9 0.28 0.89 

3 0.29 0.69 0.64 

4 0.11 0.48 0.59 

The proposed framework was evaluated using a 

GNN-based prediction model that carried out node 

classification on the provided data [19]. Figure 4 

displays the accuracy evaluation performance of 

several learning models on knowledge graphs. The 

transfer learning findings demonstrate the advantage 

of GNN-based techniques as they are more adept at 

identifying relational connections. 

 

Fig. 4 Comparison of GNN and Conventional ML Models in Terms of Accuracy. [18] 

 

Scalability was emphasised in this study as it was a 

crucial research goal. Figure 4 shows time 

increments per increasing node count together with 

the execution times of several traversal techniques 

during benchmarks utilising large-scale datasets 

[16]. According to the performance trend, A* has the 

quickest time to completion, although BFS 

(Breadth-First Search) outperforms DFS (Depth-

First Search) when growing graphs [23]. 
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Fig. 5 Execution Time for Graph Traversal vs. Node Count. [10] 

Graph-based modelling is shown to provide a practical approach to evaluating complex systems [19]. The study 

emphasises how important it is to choose appropriate network algorithms that fit a given issue type while also 

taking processing resources and scalability into account. 

IV. CONCLUSION  

This technology is used in many sectors to improve 

resource management, network applications, and 

decision-making processes. Scalability problems in 

applications of graph-based algorithms are 

addressed by current efforts to enhance 

computational methods. Future study should 

investigate new AI techniques to improve system 

prediction capacities and operational efficiency, 

since the present work leverages AI for graph 

analytics. 
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